
Word Alignment by
IBM Models

Taro Watanabe

1

Statistical Machine Translation

• Brown et al. 1993. The mathematics of statistical machine
translation: Parameter estimation. Computational
Linguistics, 19(2):263-311 (http://www.aclweb.org/
anthology/J/J93/J93-2003.pdf)

• Decomposed into translation model of p(f|e) and
language model of p(e)

ê = argmax
e

Pr(e|f)

= argmax
e

Pr(f |e)Pr(e)

2

http://www.aclweb.org/anthology/J/J93/J93-2003.pdf
http://www.aclweb.org/anthology/J/J93/J93-2003.pdf
http://www.aclweb.org/anthology/J/J93/J93-2003.pdf
http://www.aclweb.org/anthology/J/J93/J93-2003.pdf

Language Model
Pr(I do not know) = ?

Pr(I not do know) = ?

Language Model

• Likelihood of a string of English words

Pr(I do not know) = ?

Pr(I not do know) = ?

Language Model

• Likelihood of a string of English words

• Usually modeled by ngrams

Pr(I do not know) = ?

Pr(I not do know) = ?

W = w1, w2, w3, · · ·wN

Language Model

• Likelihood of a string of English words

• Usually modeled by ngrams

Pr(I do not know) = ?

Pr(I not do know) = ?

W = w1, w2, w3, · · ·wN

p(W) = p(w1, w2, w3, · · · , wN)

= p(w1)p(w2|w1)p(w3|w1, w2) · · ·
p(wN |w1, w2, w3, · · · , wN−1)

ngram Language Model

ngram Language Model

• Markov assumption: only n-words are
memories in the history

• Bigram:

p(I do not know) = p(I)p(do|I)p(not|do)p(know|not)

ngram Language Model

• Markov assumption: only n-words are
memories in the history

• Bigram:

• Training: Maximum likelihood estimate +
smoothing (Good-Turing, Witten-Bell,
Kneser-Ney etc.)

p(I do not know) = p(I)p(do|I)p(not|do)p(know|not)

Larger Data, Better LM

• Entropy: Perplexity:

(Brants et al., 2007)

 50

 100

 150

 200

 250

 300

 350

 10 100 1000 10000 100000 1e+06
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6
Pe

rp
le

xi
ty

Fr
ac

tio
n

of
 c

ov
er

ed
 5

-g
ra

m
s

LM training data size in million tokens

+.022/x2

+.035/x2

+.038/x2

+.026/x2

target KN PP
ldcnews KN PP

webnews KN PP
target C5

+ldcnews C5
+webnews C5

+web C5

Figure 4: Perplexities with Kneser-Ney Smoothing
(KN PP) and fraction of covered 5-grams (C5).

7.3 Perplexity and n-Gram Coverage
A standard measure for language model quality is
perplexity. It is measured on test data T = w|T |

1 :

PP (T) = e
− 1

|T |

|T |

i=1
log p(wi|wi−1

i−n+1) (7)

This is the inverse of the average conditional prob-
ability of a next word; lower perplexities are bet-
ter. Figure 4 shows perplexities for models with
Kneser-Ney smoothing. Values range from 280.96
for 13 million to 222.98 for 237 million tokens tar-
get data and drop nearly linearly with data size (r2 =
0.998). Perplexities for ldcnews range from 351.97
to 210.93 and are also close to linear (r2 = 0.987),
while those for webnews data range from 221.85 to
164.15 and flatten out near the end. Perplexities are
generally high and may be explained by the mix-
ture of genres in the test data (newswire, broadcast
news, newsgroups) while our training data is pre-
dominantly written news articles. Other held-out
sets consisting predominantly of newswire texts re-
ceive lower perplexities by the same language mod-
els, e.g., using the full ldcnews model we find per-
plexities of 143.91 for the NISTMT 2005 evaluation
set, and 149.95 for the NIST MT 2004 set.
Note that the perplexities of the different language

models are not directly comparable because they use
different vocabularies. We used a fixed frequency
cutoff, which leads to larger vocabularies as the
training data grows. Perplexities tend to be higher
with larger vocabularies.

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 10 100 1000 10000 100000 1e+06

Te
st

 d
at

a
BL

EU

LM training data size in million tokens

+0.62BP/x2

+0.56BP/x2

+0.51BP/x2

+0.66BP/x2

+0.70BP/x2

+0.39BP/x2
+0.15BP/x2

target KN
+ldcnews KN

+webnews KN
target SB

+ldcnews SB
+webnews SB

+web SB

Figure 5: BLEU scores for varying amounts of data
using Kneser-Ney (KN) and Stupid Backoff (SB).

Perplexities cannot be calculated for language
models with Stupid Backoff because their scores are
not normalized probabilities. In order to neverthe-
less get an indication of potential quality improve-
ments with increased training sizes we looked at the
5-gram coverage instead. This is the fraction of 5-
grams in the test data set that can be found in the
language model training data. A higher coverage
will result in a better language model if (as we hy-
pothesize) estimates for seen events tend to be bet-
ter than estimates for unseen events. This fraction
grows from 0.06 for 13 million tokens to 0.56 for 2
trillion tokens, meaning 56% of all 5-grams in the
test data are known to the language model.
Increase in coverage depends on the training data

set. Within each set, we observe an almost constant
growth (correlation r2 ≥ 0.989 for all sets) with
each doubling of the training data as indicated by
numbers next to the lines. The fastest growth oc-
curs for webnews data (+0.038 for each doubling),
the slowest growth for target data (+0.022/x2).

7.4 Machine Translation Results
We use a state-of-the-art machine translation system
for translating from Arabic to English that achieved
a competitive BLEU score of 0.4535 on the Arabic-
English NIST subset in the 2006 NIST machine
translation evaluation8 . Beam size and re-ordering
window were reduced in order to facilitate a large

8See http://www.nist.gov/speech/tests/mt/
mt06eval official results.html for more results.

865

2−
1
N log2 p(WN

1)− 1

N
log2 p(W

N
1)

Better LM, Better MT

 50

 100

 150

 200

 250

 300

 350

 10 100 1000 10000 100000 1e+06
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Pe
rp

le
xi

ty

Fr
ac

tio
n

of
 c

ov
er

ed
 5

-g
ra

m
s

LM training data size in million tokens

+.022/x2

+.035/x2

+.038/x2

+.026/x2

target KN PP
ldcnews KN PP

webnews KN PP
target C5

+ldcnews C5
+webnews C5

+web C5

Figure 4: Perplexities with Kneser-Ney Smoothing
(KN PP) and fraction of covered 5-grams (C5).

7.3 Perplexity and n-Gram Coverage
A standard measure for language model quality is
perplexity. It is measured on test data T = w|T |

1 :

PP (T) = e
− 1

|T |

|T |

i=1
log p(wi|wi−1

i−n+1) (7)

This is the inverse of the average conditional prob-
ability of a next word; lower perplexities are bet-
ter. Figure 4 shows perplexities for models with
Kneser-Ney smoothing. Values range from 280.96
for 13 million to 222.98 for 237 million tokens tar-
get data and drop nearly linearly with data size (r2 =
0.998). Perplexities for ldcnews range from 351.97
to 210.93 and are also close to linear (r2 = 0.987),
while those for webnews data range from 221.85 to
164.15 and flatten out near the end. Perplexities are
generally high and may be explained by the mix-
ture of genres in the test data (newswire, broadcast
news, newsgroups) while our training data is pre-
dominantly written news articles. Other held-out
sets consisting predominantly of newswire texts re-
ceive lower perplexities by the same language mod-
els, e.g., using the full ldcnews model we find per-
plexities of 143.91 for the NISTMT 2005 evaluation
set, and 149.95 for the NIST MT 2004 set.
Note that the perplexities of the different language

models are not directly comparable because they use
different vocabularies. We used a fixed frequency
cutoff, which leads to larger vocabularies as the
training data grows. Perplexities tend to be higher
with larger vocabularies.

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 10 100 1000 10000 100000 1e+06

Te
st

 d
at

a
BL

EU

LM training data size in million tokens

+0.62BP/x2

+0.56BP/x2

+0.51BP/x2

+0.66BP/x2

+0.70BP/x2

+0.39BP/x2
+0.15BP/x2

target KN
+ldcnews KN

+webnews KN
target SB

+ldcnews SB
+webnews SB

+web SB

Figure 5: BLEU scores for varying amounts of data
using Kneser-Ney (KN) and Stupid Backoff (SB).

Perplexities cannot be calculated for language
models with Stupid Backoff because their scores are
not normalized probabilities. In order to neverthe-
less get an indication of potential quality improve-
ments with increased training sizes we looked at the
5-gram coverage instead. This is the fraction of 5-
grams in the test data set that can be found in the
language model training data. A higher coverage
will result in a better language model if (as we hy-
pothesize) estimates for seen events tend to be bet-
ter than estimates for unseen events. This fraction
grows from 0.06 for 13 million tokens to 0.56 for 2
trillion tokens, meaning 56% of all 5-grams in the
test data are known to the language model.
Increase in coverage depends on the training data

set. Within each set, we observe an almost constant
growth (correlation r2 ≥ 0.989 for all sets) with
each doubling of the training data as indicated by
numbers next to the lines. The fastest growth oc-
curs for webnews data (+0.038 for each doubling),
the slowest growth for target data (+0.022/x2).

7.4 Machine Translation Results
We use a state-of-the-art machine translation system
for translating from Arabic to English that achieved
a competitive BLEU score of 0.4535 on the Arabic-
English NIST subset in the 2006 NIST machine
translation evaluation8 . Beam size and re-ordering
window were reduced in order to facilitate a large

8See http://www.nist.gov/speech/tests/mt/
mt06eval official results.html for more results.

865

(Brants et al., 2007)

Translation Model
f = je ne sais pas
e = I do not know

Pr(f |e) =??

7

Translation Model

• 5 Models with increasing complexity: Model 1 to
Model 5

• We will concentrate on Model 1:

• How to represent P(f|e)

• How to estimate P(f|e)

f = je ne sais pas
e = I do not know

Pr(f |e) =??

7

Alignment Representation
Pr(f |e) =

�

a

Pr(f ,a|e)

8

Alignment Representation
Pr(f |e) =

�

a

Pr(f ,a|e)

8

Alignment Representation
Pr(f |e) =

�

a

Pr(f ,a|e)

a = {(1 → 1), (2 → 3), (3 → 4), (4 → 3)}

8

Alignment Representation

• We decompose P(f|e) into P(f,a|e)

• a: word alignment, mapping from source-to-target

• How many possible “a”?

Pr(f |e) =
�

a

Pr(f ,a|e)

a = {(1 → 1), (2 → 3), (3 → 4), (4 → 3)}

2|e|×|f |

8

1-to-m Approximation

9

1-to-m Approximation

9

1-to-m Approximation

= {1, 3, 4, 3}

0 1 2 3 4

1 2 3 4

9

1-to-m Approximation

= {1, 3, 4, 3}

0 1 2 3 4

1 2 3 4

= fm
1 = f1, f2, f3, · · ·

= el0 = e0, e1, e2, e3, · · ·
= am1 = a1, a2, a3, · · ·

9

1-to-m Approximation

• Each word in f is aligned to one of e

• Assume NULL word in e

• How many possible “a”? (| |+ 1)| |

= {1, 3, 4, 3}

0 1 2 3 4

1 2 3 4

= fm
1 = f1, f2, f3, · · ·

= el0 = e0, e1, e2, e3, · · ·
= am1 = a1, a2, a3, · · ·

9

Decomposition: Model 1
Pr(f |e) =

�

a

Pr(f ,a|e)

=
�

a

Pr(f |a, e)Pr(a|e)

= Pr(m|e)
�

a

Pr(f |a,m, e)Pr(a|m, e)

≈ �
�

a

m�

j=1

t(fj |eaj)
1

(l + 1)m

s.t.∀e :
∑

f

t(f |e) = 1

10

Decomposition: Model 1
Pr(f |e) =

�

a

Pr(f ,a|e)

=
�

a

Pr(f |a, e)Pr(a|e)

= Pr(m|e)
�

a

Pr(f |a,m, e)Pr(a|m, e)

≈ �
�

a

m�

j=1

t(fj |eaj)
1

(l + 1)m

0 1 2 3 4

1 2 3 4

�× t(je1|I1)× t(ne2|not3)
× t(sais3|know4)× t(pas4|not3)
× 1

54

• An example for a fixed “a”:
s.t.∀e :

∑

f

t(f |e) = 1

10

Efficient Computation
ε
∑

a

m∏

j=1

t(fj |eaj)
1

(l + 1)m

= ε
l∑

a1=0

l∑

a2=0

· · ·
l∑

am=0

m∏

j=1

t(fj |eaj)
1

(l + 1)m

= ε
m∏

j=1

l∑

i=0

t(fj |ei)
1

(l + 1)m

11

Efficient Computation
ε
∑

a

m∏

j=1

t(fj |eaj)
1

(l + 1)m

= ε
l∑

a1=0

l∑

a2=0

· · ·
l∑

am=0

m∏

j=1

t(fj |eaj)
1

(l + 1)m

= ε
m∏

j=1

l∑

i=0

t(fj |ei)
1

(l + 1)m

�× {· · ·
+ t(je1|NULL0)× t(ne2|not3)× · · ·
+ t(je1|I1)× t(ne2|not3)× · · ·
+ t(je1|do2)× t(ne2|not3)× · · ·
+ t(je1|not3)× t(ne2|not3)× · · ·
+ t(je1|know4)× t(ne2|not3)× · · ·
+ · · · } × 1

54

11

Efficient Computation
ε
∑

a

m∏

j=1

t(fj |eaj)
1

(l + 1)m

= ε
l∑

a1=0

l∑

a2=0

· · ·
l∑

am=0

m∏

j=1

t(fj |eaj)
1

(l + 1)m

= ε
m∏

j=1

l∑

i=0

t(fj |ei)
1

(l + 1)m

�× {




t(je1|NULL0)
+t(je1|I1)
+t(je1|do2)
+t(je1|not3)
+t(je1|know4)






×






t(ne2|NULL0)
+t(ne2|I1)
+t(ne2|do2)
+t(ne2|not3)
+t(ne2|know4)






×· · ·

× } 1
54

�× {· · ·
+ t(je1|NULL0)× t(ne2|not3)× · · ·
+ t(je1|I1)× t(ne2|not3)× · · ·
+ t(je1|do2)× t(ne2|not3)× · · ·
+ t(je1|not3)× t(ne2|not3)× · · ·
+ t(je1|know4)× t(ne2|not3)× · · ·
+ · · · } × 1

54

11

Estimation: Model 1

• Given bilingual data, a set of f and e:

• Likelihood of data:

• Learn parameters Θ that maximize the log-
likelihood of data:

• For Model 1, Θ corresponds to t(f | e)

D = 〈F , E〉
∏

〈f ,e〉∈D

Pr(f |e)

θ̂ = argmax
θ

∑

〈f ,e〉∈D

logPθ(f |e)

12

Objectives: Model 1
�

�f ,e�
logPθ(f |e) =

�

�f ,e�
log �

m�

j=1

l�

i=0

t(fj |ei)
1

(l + 1)m

= constant +
�

�f ,e�
log

m�

j=1

l�

i=0

t(fj |ei)

= constant +
�

�f ,e�

m�

j=1

log
l�

i=0

t(fj |ei)

13

Objectives: Model 1

• Maximize:

• Constraints:

�

�f ,e�
logPθ(f |e) =

�

�f ,e�
log �

m�

j=1

l�

i=0

t(fj |ei)
1

(l + 1)m

= constant +
�

�f ,e�
log

m�

j=1

l�

i=0

t(fj |ei)

= constant +
�

�f ,e�

m�

j=1

log
l�

i=0

t(fj |ei)

∀e :
∑

f

t(f |e) = 1

L(θ) =
∑

〈f ,e〉

m∑

j=1

log
l∑

i=0

t(fj |ei)

13

Iterative Learning: Model 1

14

Iterative Learning: Model 1
• We will build an iterative procedure to maximize

L(Θ): choose Θ’ which is better than Θ

14

Iterative Learning: Model 1
• We will build an iterative procedure to maximize

L(Θ): choose Θ’ which is better than Θ

• Introduce an auxiliary variable: probability of
aligning fj and ei given f,e

qi,j(θ; f , e) =
tθ(fj |ei)∑l

i′=0 tθ(fj |ei′)

14

Iterative Learning: Model 1
• We will build an iterative procedure to maximize

L(Θ): choose Θ’ which is better than Θ

• Introduce an auxiliary variable: probability of
aligning fj and ei given f,e

• Remark:

qi,j(θ; f , e) =
tθ(fj |ei)∑l

i′=0 tθ(fj |ei′)

Pθ(a|f , e) =
Pθ(f ,a|e)
Pθ(f |e)

=
m∏

j=1

qi,j(θ; f , e)

14

Iterative Learning: Model 1
• We will build an iterative procedure to maximize

L(Θ): choose Θ’ which is better than Θ

• Introduce an auxiliary variable: probability of
aligning fj and ei given f,e

• Remark:

• Use Jensen’s inequality:

log
∑

z

q(z)
p(x, z)

q(z)
≥

∑

z

q(z) log
p(x, z)

q(z)

qi,j(θ; f , e) =
tθ(fj |ei)∑l

i′=0 tθ(fj |ei′)

Pθ(a|f , e) =
Pθ(f ,a|e)
Pθ(f |e)

=
m∏

j=1

qi,j(θ; f , e)

14

Lower Bound: Model 1

L(θT) =
�

�f ,e�

m�

j=1

log
l�

i=0

tθT (fj |ei)

=
�

�f ,e�

m�

j=1

log
l�

i=0

qi,j(θ
T−1)

tθT (fj |ei)
qi,j(θT−1)

≥
�

�f ,e�

m�

j=1

qi,j(θ
T−1) log

l�

i=0

tθT (fj |ei)
qi,j(θT−1)

=
�

�f ,e�

m�

j=1

qi,j(θ
T−1) log

l�

i=0

tθT (fj |ei) + constant

15

Lower Bound: Model 1

Jensen’s inequality
L(θT) =

�

�f ,e�

m�

j=1

log
l�

i=0

tθT (fj |ei)

=
�

�f ,e�

m�

j=1

log
l�

i=0

qi,j(θ
T−1)

tθT (fj |ei)
qi,j(θT−1)

≥
�

�f ,e�

m�

j=1

qi,j(θ
T−1) log

l�

i=0

tθT (fj |ei)
qi,j(θT−1)

=
�

�f ,e�

m�

j=1

qi,j(θ
T−1) log

l�

i=0

tθT (fj |ei) + constant

15

Lower Bound: Model 1

lower bound

Jensen’s inequality
L(θT) =

�

�f ,e�

m�

j=1

log
l�

i=0

tθT (fj |ei)

=
�

�f ,e�

m�

j=1

log
l�

i=0

qi,j(θ
T−1)

tθT (fj |ei)
qi,j(θT−1)

≥
�

�f ,e�

m�

j=1

qi,j(θ
T−1) log

l�

i=0

tθT (fj |ei)
qi,j(θT−1)

=
�

�f ,e�

m�

j=1

qi,j(θ
T−1) log

l�

i=0

tθT (fj |ei) + constant

15

Maximize: Model 1

• Objective is concave: we can compute global maximum

• But, potentially many global maximum (Why?)

• Brown et al. (1993) says “strictly concave”

• Standard maximization technique: Introduce Lagrangian
+ take its partial differentiation + maximize

s.t.∀e :
∑

f

tθ(f |e) = 1

(Toutanova and
Galley, 2011)

16

θ̂T = argmax
θT

∑

〈f ,e〉

m∑

j=1

qi,j(θ
T−1) log

l∑

i=0

tθT (fj |ei)

Maximize: Model 1

17

Maximize: Model 1
• Lagrangian

h(θT) =
�

�f ,e�

m�

j=1

qi,j(θ
T−1) log

l�

i=0

tθT (fj |ei)

−
�

e

αe




�

f

tθT (f |e)− 1





17

Maximize: Model 1
• Lagrangian

• Partial derivation

h(θT) =
�

�f ,e�

m�

j=1

qi,j(θ
T−1) log

l�

i=0

tθT (fj |ei)

−
�

e

αe




�

f

tθT (f |e)− 1





∂h(θT)

∂tθT (f |e)
=

∑

〈f ,e〉

m∑

j=1

l∑

i=0

qi,j(θ
T−1)tθT (fj |ei)−1δ(f, fj)δ(e, ei)− αe

17

Maximize: Model 1
• Lagrangian

• Partial derivation

• Maximize

δ(x, y) =

{
1 if x = y
0 otherwise

h(θT) =
�

�f ,e�

m�

j=1

qi,j(θ
T−1) log

l�

i=0

tθT (fj |ei)

−
�

e

αe




�

f

tθT (f |e)− 1





∂h(θT)

∂tθT (f |e)
=

∑

〈f ,e〉

m∑

j=1

l∑

i=0

qi,j(θ
T−1)tθT (fj |ei)−1δ(f, fj)δ(e, ei)− αe

tθT (f |e) = α−1
e

∑

〈f ,e〉

m∑

j=1

l∑

i=0

qi,j(θ
T−1)δ(f, fj)δ(e, ei)

17

EM-Algorithm: Model 1

• New parameter t(f|e) in LHS is estimated from the
expected counts using the old parameters

• alpha serves as a normalizer

• Starting from Θ0, compute ΘT from ΘT-1

• Compute expected counts (E-step)

• Perform maximization (M-step)

∀e :
∑

f

t(f |e) = 1

tθT (f |e) = α−1
e

∑

〈f ,e〉

m∑

j=1

l∑

i=0

qi,j(θ
T−1)δ(f, fj)δ(e, ei)

qi,j(θ; f , e) =
tθ(fj |ei)∑l

i′=0 tθ(fj |ei′)

18

An Example

• Initial steps: all alignments equal likely

• An example from Chapter 4 of (Koehn, 2009)

... la maison ... la maison blue ... la fleur ...

... the house ... the blue house ... the flower ...

19

An Example

• After one iteration, alignments between
“le” and “the” are more likely

... la maison ... la maison blue ... la fleur ...

... the house ... the blue house ... the flower ...

20

An Example

• After another iteration, “fleur” and “flower”
are more likely aligned

... la maison ... la maison bleu ... la fleur ...

... the house ... the blue house ... the flower ...

21

An Example

• Convergence

... la maison ... la maison bleu ... la fleur ...

... the house ... the blue house ... the flower ...

22

Interpretation: Model 1

23

Interpretation: Model 1
• If “a” is given, we collect counts from alignment

0 1 2 3 4

1 2 3 4

t(je|I) = count(je, I)�
f count(f, I)

23

Interpretation: Model 1
• If “a” is given, we collect counts from alignment

• EM-Algorithm: collect “fractional counts” from t(f|e)

0 1 2 3 4

1 2 3 4

t(je|I) = count(je, I)�
f count(f, I)

0 1 2 3 4

1 2 3 4

t(je|I) = count(je, I; θ)�
f count(f, I; θ)

23

Pseudo code: Model 1

• Adapted from Chapter 4 of (Koehn, 2009)

Input: set of sentence pairs (f, e)
Output: translation prob. t(f |e)

1: initialize t(f |e) uniformly
2: while not converged do
3: // initialize
4: count(f |e) = 0 for all f, e
5: total(e) = 0 for all e
6: for all sentence pairs (f,e) do
7: // compute normalization
8: for all words f in f do
9: s-total(f) = 0

10: for all words e in e do
11: s-total(f) += t(f |e)
12: end for
13: end for

14: // collect counts
15: for all words f in f do
16: for all words e in e do
17: count(f |e) += t(f |e)

s-total(f)

18: total(e) += t(f |e)
s-total(f)

19: end for
20: end for
21: end for
22: // estimate probabilities
23: for all English words e do
24: for all foreign words f do
25: t(f |e) = count(f |e)

total(e)
26: end for
27: end for
28: end while

24

Summary: Model 1
• Modeling: Model 1 parameter Θ consists of lexical

translation parameters of t(f|e)

• Learning: EM-algorithm to learn Θ given f, e

• Remaining questions:

• Given Θ, f, e, what is the most likely “a”

• Viterbi alignment: replace summation with “max”

• Given Θ, f, what is the most likely “e, a”

• decoding problem: we will cover this later
25

Some notes on Model 1

• -log(x) is strictly convex, but -log(∑x) is convex

• Many global optimum (Toutanova and Galley, 2011)

• We can easily re-distribute ∑x among others

• If e and e’ always co-occur in a data, we cannot
distinguish them

∀e :
∑

f

t(f |e) = 1

L(θ) =
∑

〈f ,e〉

m∑

j=1

log
l∑

i=0

t(fj |ei)

xa bxλ

chord

xλ

f(x)

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y)

26

Other Models

• Reminder: Generative story of Model 1

• Each word f is generated from one of e

a1 a2 a3 a4

t(f |e)× 1

l + 1

(Brown et al., 1993)

27

Model 2

• Like Model 1, each f is generated independently,
but with alignment distribution

a1 a2 a3 a4

t(f |e)× a(i|j,m, l)

(Brown et al., 1993)

28

HMM Model

• Each f is emitted from one of e, and alignment
is conditioned on previous alignment

a1 a2 a3 a4

t(f |e)× a(i− i�|m, l)

(Och and Ney, 2003)

29

Model 3-5

• Completely different story from Model 1,2 or HMM

• Explicitly model one-to-many alignment via fertility

• Unlike Model 1,2, HMM, no Dynamic Programming

(Brown et al., 1993)

30

Model 3-5

• Completely different story from Model 1,2 or HMM

• Explicitly model one-to-many alignment via fertility

• Unlike Model 1,2, HMM, no Dynamic Programming

I do not know

(Brown et al., 1993)

30

Model 3-5

• Completely different story from Model 1,2 or HMM

• Explicitly model one-to-many alignment via fertility

• Unlike Model 1,2, HMM, no Dynamic Programming

I do not know

I not knownot
fertility

(Brown et al., 1993)

30

Model 3-5

• Completely different story from Model 1,2 or HMM

• Explicitly model one-to-many alignment via fertility

• Unlike Model 1,2, HMM, no Dynamic Programming

I do not know

I not knownot

not knownotI

fertility

NULL insertion

(Brown et al., 1993)

30

Model 3-5

• Completely different story from Model 1,2 or HMM

• Explicitly model one-to-many alignment via fertility

• Unlike Model 1,2, HMM, no Dynamic Programming

ne saispasje

I do not know

I not knownot

not knownotI

fertility

NULL insertion

translation

(Brown et al., 1993)

30

Model 3-5

• Completely different story from Model 1,2 or HMM

• Explicitly model one-to-many alignment via fertility

• Unlike Model 1,2, HMM, no Dynamic Programming

ne saispasje

I do not know

I not knownot

ne sais pasje

not knownotI

fertility

NULL insertion

translation

distortion
(Brown et al., 1993)

30

Conclusion

• Introduced IBM Models, a basis of SMT

• Derived iterative procedure for estimation

• Generative model, EM-algorithm

• Higher models (Model 1-5, HMM)

• We can answer a question: P(f | e) = ?

• By-product, we can also answer two
questions: P(f, a | e) = ? and P(a | f, e) = ?

31

Word Alignment

• Given a sentence pair, can we compute word
correspondence? (An example from Chapter 4 of Koehn, 2009)

house

the

in

stay

will

he

that

assumes

michael

m
ic

ha
el

ge
ht

da
vo

n

au
s

da
ss

er im ha
us

bl
ei

bt

,

32

Word Alignment?

• one-to-many for does-to-{wohnt, nicht}

• phrasal correspondence in “kicked the bucket”

here

live

not

does

john

jo
hn

hi
er

ni
ch

t

w
oh

nt

??

bucket

the

kicked

john

jo
hn

in
s

gr
as

s

bi
ss
33

Alignment Error Rate

• An example from (Taskar et al., 2005)

at word alignment, aligning, say, each English

word with the French word (or null) with the

highest Dice value (see (Melamed, 2000)), sim-

ply as a matching-free heuristic model. With

Dice counts taken from the 1.1M sentences, this

gives and AER of 38.7 with English as the tar-

get, and 36.0 with French as the target (in line

with the numbers from Och and Ney (2003)).

As observed in Melamed (2000), this use of

Dice misses the crucial constraint of competi-

tion: a candidate source word with high asso-

ciation to a target word may be unavailable for

alignment because some other target has an even

better affinity for that source word. Melamed

uses competitive linking to incorporate this con-

straint explicitly, while the IBM-style models

get this effect via explaining-away effects in EM

training. We can get something much like the

combination of Dice and competitive linking by

running with just one feature on each pair: the

Dice value of that pair’s words.2 With just a

Dice feature – meaning no learning is needed

yet – we achieve an AER of 29.8, between the

Dice with competitive linking result of 34.0 and

Model 1 of 25.9 given in Och and Ney (2003).

An example of the alignment at this stage is

shown in Figure 1(a). Note that most errors lie

off the diagonal, for example the often-correct

to-à match.

IBM Model 2, as usually implemented, adds

the preference of alignments to lie near the di-

agonal. Model 2 is driven by the product of a

word-to-word measure and a (usually) Gaussian

distribution which penalizes distortion from the

diagonal. We can capture the same effect us-

ing features which reference the relative posi-

tions j and k of a pair (ej , fk). In addition to a

Model 2-style quadratic feature referencing rela-

tive position, we threw in the following proxim-

ity features: absolute difference in relative posi-

tion abs(j/|e|−k/|f |), and the square and square

root of this value. In addition, we used a con-

junction feature of the dice coefficient times the

proximity. Finally, we added a bias feature on

each edge, which acts as a threshold that allows

2This isn’t quite competitive linking, because we use
a non-greedy matching.

i
n

1
9
7
8

A
m
e
r
i
c
a
n
s

d
i
v
o
r
c
e
d

1
,
1
2
2
,
0
0
0

t
i
m
e
s .

en

1978

,

on

a

enregistré

1,122,000

divorces

sur

le

continent

.

i
n

1
9
7
8

A
m
e
r
i
c
a
n
s

d
i
v
o
r
c
e
d

1
,
1
2
2
,
0
0
0

t
i
m
e
s .

en

1978

,

on

a

enregistré

1,122,000

divorces

sur

le

continent

.

(a) (b)

Figure 2: Example alignments showing the ef-

fects of orthographic cognate features. (a) Dice

and Distance, (b) With Orthographic Features.

sparser, higher precision alignments. With these

features, we got an AER of 15.5 (compare to 19.5

for Model 2 in (Och and Ney, 2003)). Note that

we already have a capacity that Model 2 does

not: we can learn a non-quadratic penalty with

linear mixtures of our various components – this

gives a similar effect to learning the variance of

the Gaussian for Model 2, but is, at least in

principle, more flexible.3 These features fix the

to-à error in Figure 1(a), giving the alignment

in Figure 1(b).

On top of these features, we included other

kinds of information, such as word-similarity

features designed to capture cognate (and ex-

act match) information. We added a feature for

exact match of words, exact match ignoring ac-

cents, exact matching ignoring vowels, and frac-

tion overlap of the longest common subsequence.

Since these measures were only useful for long

words, we also added a feature which indicates

that both words in a pair are short. These or-

thographic and other features improved AER to

14.4. The running example now has the align-

ment in Figure 1(c), where one improvement

may be attributable to the short pair feature – it

has stopped proposing the-de, partially because

the short pair feature downweights the score of

that pair. A clearer example of these features

making a difference is shown in Figure 2, where

both the exact-match and character overlap fea-

3The learned response was in fact close to a Gaussian,
but harsher near zero displacement.

78

Sure

Possible

Predicted

AER(A,S, P) =

�
1− |A ∩ S|+ |A ∩ P |

|A|+ |S|

�

=

�
1− 3 + 3

3 + 4

�
=

1

7

34

AER Results

• Fr-En Hansard Task (Och and Ney, 2003)

37

Och and Ney Comparison of Statistical Alignment Models

Table 5
Comparison of alignment error rate percentages for various training schemes (Hansards task;
Dice+C: Dice coefficient with competitive linking).

Size of training corpus

Model Training scheme 0.5K 8K 128K 1.47M

Dice 50.9 43.4 39.6 38.9
Dice+C 46.3 37.6 35.0 34.0
Model 1 15 40.6 33.6 28.6 25.9
Model 2 1525 46.7 29.3 22.0 19.5
HMM 15H5 26.3 23.3 15.0 10.8
Model 3 152533 43.6 27.5 20.5 18.0

15H533 27.5 22.5 16.6 13.2
Model 4 15253343 41.7 25.1 17.3 14.1

15H53343 26.1 20.2 13.1 9.4
15H543 26.3 21.8 13.3 9.3

Model 5 15H54353 26.5 21.5 13.7 9.6
15H5334353 26.5 20.4 13.4 9.4

Model 6 15H54363 26.0 21.6 12.8 8.8
15H5334363 25.9 20.3 12.5 8.7

Figure 3
Comparison of alignment error rate (in percent) for Model 1 and Dice coefficient (left: 34K
Verbmobil task, right: 128K Hansards task).

6.2 Heuristic Models versus Model 1
We pointed out in Section 2 that from a theoretical viewpoint, the main advantage
of statistical alignment models in comparison to heuristic models is the well-founded
mathematical theory that underlies their parameter estimation. Tables 4 and 5 show
that the statistical alignment models significantly outperform the heuristic Dice coef-
ficient and the heuristic Dice coefficient with competitive linking (Dice+C). Even the
simple Model 1 achieves better results than the two Dice coefficient models.

It is instructive to analyze the alignment quality obtained in the EM training of
Model 1. Figure 3 shows the alignment quality over the iteration numbers of Model 1.
We see that the first iteration of Model 1 achieves significantly worse results than the
Dice coefficient, but by only the second iteration, Model 1 gives better results than the
Dice coefficient.

35

Symmetric Alignment

• Take intersection of two directions

• Heuristic to add union alignment points

assumes

da
vo

n

house

the

in

stay

will

he

that
ge

ht

au
s

da
ss

er im ha
us

bl
ei

bt

,

michael

m
ic

ha
el

assumes

da
vo

n

house

the

in

stay

will

he

that

ge
ht

au
s

da
ss

er im ha
us

bl
ei

bt

,

michael

m
ic

ha
el

assumes

da
vo

n
house

the

in

stay

will

he

that

ge
ht

au
s

da
ss

er im ha
us

bl
ei

bt

,

michael

m
ic

ha
el

English to German German to English

Intersection / Union

(Och and Ney, 2003)

36

Agreement Training

• As an alternative to the heuristic approach, we
can enforce agreement of two models during EM-
algorithm (Liang et al., 2006)

• Summation is intractable: Approximate q by
multiple of qi,j(Θ;f,e) from two models

• M-step is performed for each individual model

E-step: q(a; f , e) =
1

Zf ,e
p1(a|f , e; θ1) · p2(a|e, f ; θ2)

M-step: θ′ = argmax
θ

∑

f ,e,a

q(a; f , e) log p1(f , e,a; θ1)

+
∑

f ,e,a

q(a; f , e) log p2(f , e,a; θ2)

37

Posterior Constraints

• Another objective to make an agreement
(Ganchev et al., 2008)

• Additional projection step to adjust λ so that two
posterior probabilities qi, j() and qj, i() agree

qi,j(θ, λ; f , e) ← tθ(fj |ei)eλi,j

�l
i�=0 tθ(fj |ei�)eλi�,j

qj,i(θ, λ; e, f) ← tθ(ei|fj)e−λi,j

�m
j�=0 tθ(ei|fj�)e−λi,j�

λi,j ← λi,j − qi,j(θ, λ; f , e) + qj,i(θ, λ; e, f)

38

Other Topics for Alignment
• Supervised training (Taskar et al., 2005; Haghighi et

al., 2009)

• Unsupervised training with many features (Berg-
Kirkpatrick et al., 2010; Dyer et al., 2011)

• Syntactically constrained alignment (DeNero and
Klein, 2007; Burkett et al. 2010; Riesa and Marcu,
2010; Pauls et al., 2010)

• Phrasal alignment (Marcu and Wong, 2002;
Blunsom et al., 2009; Neubig et al., 2011)

39

Implementations
• Language Model

• SRILM (http://www-speech.sri.com/projects/srilm/)

• BerkeleyLM (http://code.google.com/p/berkeleylm/)

• kenlm (http://kheafield.com/code/kenlm/)

• IBM Models

• GIZA++ (http://code.google.com/p/giza-pp/)

• MGIZA (http://geek.kyloo.net/software/doku.php/
mgiza:overview)

• Agreement/Posterior constrained training

• BerkeleyAligner (http://code.google.com/p/berkeleyaligner/)

• PostCat (http://www.seas.upenn.edu/~strctlrn/CAT/CAT.html)
40

http://www-speech.sri.com/projects/srilm/
http://www-speech.sri.com/projects/srilm/
http://code.google.com/p/berkeleylm/
http://code.google.com/p/berkeleylm/
http://kheafield.com/code/kenlm/
http://kheafield.com/code/kenlm/
http://code.google.com/p/giza-pp/
http://code.google.com/p/giza-pp/
http://geek.kyloo.net/software/doku.php/mgiza:overview
http://geek.kyloo.net/software/doku.php/mgiza:overview
http://geek.kyloo.net/software/doku.php/mgiza:overview
http://geek.kyloo.net/software/doku.php/mgiza:overview
http://code.google.com/p/berkeleyaligner/
http://code.google.com/p/berkeleyaligner/
http://www.seas.upenn.edu/~strctlrn/CAT/CAT.html
http://www.seas.upenn.edu/~strctlrn/CAT/CAT.html

References
• P. F. Brown, S. A. D. Pietra, V. J. D. Pietra, and R. L. Mercer, ``The mathematics of statistical

machine translation: Parameter estimation,'' Computational Linguistics, vol. 19, no. 2, pp.
263--311, 1993.

• K. Toutanova and M. Galley, ``Why initialization matters for ibm model 1: Multiple optima and
non-strict convexity,'' in Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies, (Portland, Oregon, USA), pp. 461--466,
Association for Computational Linguistics, June 2011.

• P. Koehn, Statistical Machine Translation. Cambridge University Press, 2009.

• F. J. Och and H. Ney, ``A systematic comparison of various statistical alignment models,''
Computational Linguistics, vol. 29, pp. 19--51, March 2003.

• B. Taskar, S. Lacoste-Julien, and D. Klein, ``A discriminative matching approach to word
alignment,'' in HLT '05: Proceedings of the conference on Human Language Technology and
Empirical Methods in Natural Language Processing, (Morristown, NJ, USA), pp. 73--80,
Association for Computational Linguistics, 2005.

• P. Liang, B. Taskar, and D. Klein, ``Alignment by agreement,'' in Proceedings of the Human Language
Technology Conference of the NAACL, Main Conference, (New York City, USA), pp. 104--111,
Association for Computational Linguistics, June 2006.

41

References
• K. Ganchev, J. a. V. Grac ̧a, and B. Taskar, ``Better alignments = better translations?,'' in Proceedings of

ACL-08: HLT, (Columbus, Ohio), pp. 986--993, Association for Computational Linguistics, June 2008.

• A. Haghighi, J. Blitzer, J. DeNero, and D. Klein, ``Better word alignments with supervised itg models,'' in
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the AFNLP, (Suntec, Singapore), pp. 923--931, Association
for Computational Linguistics, August 2009.

• T. Berg-Kirkpatrick, A. Bouchard-Coˆte ́, J. DeNero, and D. Klein, ``Painless unsupervised learning with
features,'' in Human Language Technologies: The 2010 Annual Conference of the North American Chapter of
the Association for Computational Linguistics, (Los Angeles, California), pp. 582--590, Association for
Computational Linguistics, June 2010.

• C. Dyer, J. H. Clark, A. Lavie, and N. A. Smith, ``Unsupervised word alignment with arbitrary features,''
in Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies, (Portland, Oregon, USA), pp. 409--419, Association for Computational Linguistics, June
2011.

• J. DeNero and D. Klein, ``Tailoring word alignments to syntactic machine translation,'' in Proceedings of
the 45th Annual Meeting of the Association of Computational Linguistics, (Prague, Czech Republic), pp.
17--24, Association for Computational Linguistics, June 2007.

• D. Burkett, J. Blitzer, and D. Klein, ``Joint parsing and alignment with weakly synchronized grammars,''
in Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the
Association for Computational Linguistics, (Los Angeles, California), pp. 127--135, Association for
Computational Linguistics, June 2010. 42

References
• J. Riesa and D. Marcu, ``Hierarchical search for word alignment,'' in Proceedings of the 48th Annual

Meeting of the Association for Computational Linguistics, (Uppsala, Swe-den), pp. 157--166, Association for
Computational Linguistics, July 2010.

• A. Pauls, D. Klein, D. Chiang, and K. Knight, ``Unsupervised syntactic alignment with inversion
transduction grammars,'' in Human Language Technologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computational Linguistics, (Los Angeles, California), pp. 118--126,
Association for Computational Linguistics, June 2010.

• D. Marcu and W. Wong, ``A phrase-based, joint probability model for statistical machine translation,''
in Proc. of EMNLP-2002, (Philadelphia, PA), July 2002.

• P. Blunsom, T. Cohn, C. Dyer, and M. Osborne, ``A gibbs sampler for phrasal synchronous grammar
induction,'' in Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language Processing of the AFNLP, (Suntec, Singapore), pp.
782--790, Association for Computational Linguistics, August 2009.

• G. Neubig, T. Watanabe, E. Sumita, S. Mori, and T. Kawahara, ``An unsupervised model for joint phrase
alignment and extraction,'' in Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, (Portland, Oregon, USA), pp. 632-641, Association for
Computational Linguistics, June 2011.

• T. Brants, A. C. Popat, P. Xu, F. J. Och, and J. Dean, ``Large language models in machine translation,'' in
Proceedings of the 2007 Joint Conference on Empirical Methods in Natu- ral Language Processing and
Computational Natural Language Learning (EMNLP-CoNLL), pp. 858--867, 2007.

43

