Phrase-based Models
for SMT

Taro VYVatanabe



Why Phrases!

® Use phrases as a unit of translations

® Directly handle many-to-many word
correspondence + local reordering

® Allow local context + non-compositional phrases

® Employed in many systems, including Google, and
open-source, Moses (http://www.statmt.org/moses/)



http://www.statmt.org/moses/
http://www.statmt.org/moses/

Phrase-based Model

Fam with the

. (An example from Chap. 5, Koehn, 2009)
® Generative story:

® fis segmented into phrases
® Fach phrase is translated

® Translated phrases are reordered



Phrase-based Models

o CXp (WT ' h(ev ¢7 f))
e = argléﬂax Ze’,g/)’ exp (WT .h(e, ¢, 1))

= argmaxw ' -h(e, ¢,f)

® Maximization of a log-linear combination of
multiple feature functions h(e, P, f)

® O:phrasal partition of f and e

® w: weight of feature functions
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Questions

® Training: How to learn phrases and
parameters (P and h)?

® Decoding (or search): How to find the best
translation (argmax)?

® Tuning (or optimization): How to learn the
scaling of features (w)!?
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Training

® | earn phrase pairs from D = (F,¢&)
® A standard heuristic approach

® Compute word alignment

® Extract phrase pairs

® Score phrases



Word alighment
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(Example from Huang and Chiang, 2007)



Extract Phrase Pairs
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® From word alighment, extract a phrase pair
consistent with word alighment
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Consistent Phrases

consistent 1nconsistent consistent
(Example from Koehn, 2009)

® a phrase pair (f, e) is consistent:

Ve, c€: (e, f;)ea— fef

vfjef:(e; fj) ea—e e

HeiEé,ijf:(ej,fj)Ea
10



Exhaustive Extraction

o @t

SR
Bush [
held B
a
talk B
with B
Sharon B

® Exhaustively extract phrases from f, e
11



Exhaustive Extraction

o @t

SR
Bush [
held B
a
talk B
with B
Sharon B

® Exhaustively extract phrases from f, e
11



Exhaustive Extraction

o @t

SR
Bush [
held B
a
talk B
with B
Sharon B

® Exhaustively extract phrases from f, e
11



Exhaustive Extraction

o @t

SR
Bush [ -
held | B
) %
talk B
with B
Sharon B

® Exhaustively extract phrases from f, e
11



Exhaustive Extraction

®. &50 o
g\\\ OV X
Bush . \ \
held B
a

talk S
with .

Sharon .

® Exhaustively extract phrases from f, e
11



Exhaustive Extraction

®. &50 o
g\\\ OV X
Bush . \ \
held B
a

talk — IR
with .

Sharon .

® Exhaustively extract phrases from f, e
11



Exhaustive Extraction

®. &50 o
g\\\ OV X
Bush . \ \
held B
a

talk — 1N
with .

Sharon .

® Exhaustively extract phrases from f, e
11



Exhaustive Extraction
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Exhaustive Extraction
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Features from Phrases

_ COUﬂt(év f)
1 f p— 1 qJ
ng¢( |e) 08 Zf_’ C()U.ﬂt(éa f/)
o count(e, f

> count(e’, f)

® Collect all the phrase pairs from the data

® Maximum likelihood estimates by relative
frequencies

® Employ scores in two directions
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Features from Alignment
e

1
el rgyean 2 ol

V(i,7)€a

log Plex (ﬂéa 5-)

£

log prex(€|f,a) = log H\{z\ Ea}\ Z t(file:)

V(j,2)€Ea

® | exical weighing which scores by word translation
probabilities

® |dea: counts for rare phrase pairs are unreliable

® Smoothing effect by decomposing into word pairs
13



Features for Distortion
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® Distance-based distortion modeling
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Features for Distortion
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® Distance-based distortion modeling
d(f,p,e) = | +2[+ [0 +[ =5 =7
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® Fine grained reordering features: logp,(o € {m, s, d} |f, &)

® Either monotone, swap, discontinuous
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Other Features

® |og of ngram language model(s)
® word count: bias for ngram language model(s)

® phrase count: shorter or longer phrases
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Direct Iraining

® |nstead of word alignhment + extraction pipeline,
directly learn phrase-pairs (Marcu and VWong, 2002)

® Bayesian approach + blocked Gibbs sampling to learn
parameters (Blunsom et al., 2009)

® |nitialize derivations of D
® For each pair f, e, sample new derivation
® Update statistics

® Exhaustively memorize longer phrases (Neubig et
al.,, 201 1)
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Questions

® Training: How to learn phrases and
parameters (P and h)?

® Decoding (or search): How to find the best
translation (argmax)?

® Tuning (or optimization): How to learn the
scaling of features (w)!?
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Questions

® Decoding (or search): How to find the best
translation (argmax)?
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Decoding

N CXp (WT ' h(ev ¢7 f))

argmax

e Ze,7¢, exp (wT -h(e, ¢, f))

= argmaxw ' -h(e,o,f)

® Given an input sentence f and phrasal model h and w,
seek e with the highest score

®
|

® Potential errors:

® Search error: we cannot find the best scored
hypothesis

® Translation error: highest scored hypothesis is bad
20



Enumerate Phrase Pairs

bushi yu shalong juxing le huitan

® Given a input sentence f, we can enumerate all
possible phrases that match with the source side

® Choose the best phrase pair + ordering
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Phrase-based Search Space

bushi yu shalong juxing le huitan
® Node: bit-vector representing covered source words

® Edge: phrasal translations, strictly left-to-right
® Search space: O(2"),Time: O(2"n?) (Why?)
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Phrase-based Search Space
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Phrase-based Search Space
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Traveling Salesman Problem

® NP-hard problem: visit each city only once
® MT as a Traveling Salesman Problem (Knight, | 999)
® Each source word corresponds to a city
® A Dynamic Programming solution:
® State: visited cities (bit-vector)
® Search space: O(n?)

® Distortion limit to reduce search space

i.e. long distortion:[ | Je— ] {  Jo— ]

23




Non-local features

® Features that requires scoring out of phrases: bigram
language model

® Additional state representation required for “future
scoring”’: |-word for bigram LM

® Space: O(2"V™'), Time: O(2"V™'n?) for m-gram LM
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Non-local features
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® Expand hypotheses from the smallest cardinality first
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Questions

® Training: How to learn phrases and
parameters (P and h)?

® Decoding (or search): How to find the best
translation (argmax)?

® Tuning (or optimization): How to learn the
scaling of features (w)!?
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Questions

® Tuning (or optimization): How to learn the
scaling of features (w)!?



Tuning

A CXP (WT ' h(ev ¢7 f))

€ = argmax

o Ze,7¢, exp (wT -h(e, ¢, f))

= argmaxw ' -h(e, ¢,f)

® Three popular objectives (in SMT) for tuning w

® (Direct) Error Minimization (Och, 2003)
® Maximum Entropy (Och and Ney, 2002)

® |arge Margin (VWatanabe et al,, 2007; Chiang
et al., 2008; Hopkins and May, 201 |)
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(Direct) Minimum Error

S
W = argmin Z [(argmaxw ' -h(e,f,), e,)

s=1

® MERT (Minimum ERror Training)

® Standard in SMT (but not in other NLP areas, such
as tagging etc.)

® We can incorporate arbitrary error functions, |

® “Summation” can be replaced by document-wise
BLEU specific summation

® |O+ real valued features
30



n-best Approximation

1: procedure MERT({ (es, fS)}le)

2 forn=1...N do

3 Decode and generate nbest list using w
4: Merge nbest list

5: for k =1...K do

6 for each parameter m = 1...M do
7 Solve one dimensional optimization
8 end for

9: update w

10: end for

11: end for

12: end procedure

® N iterations, with each iteration, n-bests are
generated and merged

® K iterations, with each iteration, M dimensions are
tried (M = # of features), and w is updated
31



Efficient Line Search

é = argmaxw, -h,,(e f)+w,_ -h, (e f)
e — —,e——

slope constant

® |f we choose one dimension m, and others fixed,
we can treat each hypothesis e as a “line”

® Compute convex hull of a set of “lines”
32
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Efficient Line Search
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MERT in Practice

Many random starting points (Macherey et al., 2008;
Moore and Quirk, 2008)

Many random directions (Macherey et al., 2008)
Error count smoothing (Cer et al., 2008)
Regularization (Hayashi et al., 2009)
Multi-dimensional search by efficiently computing

convex hull (Galley and Quirk, 201 1)

34



Maximum Entropy
. Zexp " h(e* )

. A 5 e* CORACLE(F,)
W = argmin S lwl — > log

—1 Zexp( T-h(e,fs))

e’ €GEN(f;)

® Minimize the negative log-likelihood of generating
good translations (Och and Ney, 2002)

® ORACLE is a subset of GEN, a set of hypotheses
with minimum loss

® Optimized by L-BFGS or SGD

® Potentially large # of features as in NLP tasks
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Why Not MaxEnt!?

error criterion used in training | mWER [%] | mPER [%] | BLEU [%] NIST | # words
confidence intervals +/- 2.7 +/- 1.9 +/- 0.8 +/- 0.12 -

MMI 68.0 51.0 11.3 5.76 21933

mWER 68.3 50.2 13.5 6.28 22914
smoothed-mWER 68.2 50.2 13.2 6.27 22902
mPER 70.2 49.8 15.2 6.71 24399
smoothed-mPER 70.0 49.7 15.2 6.69 24198
BLEU 76.1 53.2 17.2 6.66 28002

NIST 73.3 51.5 16 4 6.80 26602

® |n Och and Ney (2002), they used

® VWER to select oracle translations

® n-best merging approach to approximate

summation as in MERT
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Large Margin
= a]fgmm—HWH2 + LLLfse el

s=1 e}

WT.h(e;fS)_WT'h(esva) Zl( Cs; 3) gse €,
e* ¢ ORACLE(f,)
e, € GEN(f,)

® Structured output learning approach

® Very hard to enumerate all possible €’ and oracle
translations e*

® Solution: online learning or n-best approximation
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Online Learning

Require: {(fs,e;s)},_,
1. wl = {O}
2: t =1
3: for 1...N do
4: s ~ random(1, S)
& € GEN(f,, w'™1)
if /(é,e;) > 0 then
witl = wt + h(esa fs) - h(é7 fS)
t=1t+1
9: end if
10: end for
11: return w' or + Zi\;l w/

® Averaged perceptron (Liang et al., 2006)

® Scale to large data, but each iteration requires
decoding + weight update
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Online Large Margin

A
W = argmin §HW/ — w||* + max (Is — w'' - Ahy)

/

é;, = argmaxw ' -h(e,f,)

s = l(es)—1(e])
Ah, = h(e; f;) —h(e",f;)

® line /7 is replaced by the solution of the above
equation

® Still, requires decoding + update in each iteration

® Hard to determine when to stop (watch another
dev data)
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Ranking Approach
—argmm—\|wu2+LLzsse~e

s=1 e’/
— log (1 + exp(—w r Aheg,es)) Z fs,eg,es
e, e. € GEN(f,)

S)? S

(e ,e]) >0
Ahe// el = h(e” f ) h(e;, fs)
® An n-best approximation approach (Hopkins and

May, 201 1)

® Pair-wise comparison of all the hypotheses

® |ogistic-loss (or O-1 loss): use an off-the-shelf binary

classifier 0



Results

26

4-ref BLEU

0 5 10 15 20 25 30
Iteration

® Reranking is competitive to MERT and MIRA,

and scales to large # of features
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Conclusion

® Training: How to learn phrases and
parameters (P and h)?

® Decoding (or search): How to find the best
translation (argmax)?

® Tuning (or optimization): How to learn the
scaling of features (w)!?
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