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20 years history

• Statistical Machine Translation (SMT) started from 
Brown et al. (1990)

• Is SMT matured?

• Real service: Web-based (Google, Microsoft), 
mobile phone (NICT)

• Promising gains from Tree-based approaches

• Syntax-based SMT in {tree, string}-to-{tree, string}

• Decoding = Parsing

• Better model, better search and better training
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Statistical Machine Translation?

• MT as a decision making process:

• Given a source text, search for the best 
translation

• Difference from Rule-based (Knowledge-based) MT:

• Learn model/parameters from data

• Difference from Example-based MT:

• Both are empirical, but more emphasis on 
examples + (usually) greedy search + heuristics
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Overview of overview

• Foundation

• Model, Training, Decoding

• Phrase-based SMT

• Tree-based SMT

• Advanced Topics
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Overview

• Model, Training, Decoding

• Word Alignment

• Phrase-based SMT

• Evaluation

• Optimization
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Translation as a decision problem
• Modeling:

• Good p(e|f) approximating Pr(e|f)

• Linguistic clues will be helpful

• Training:

• Assign parameters given data

• Maximum-likelihood, EM-algorithms, Bayesian

• Search:

• Find the best translation

• DP-based search with heuristic pruning
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Source Channel Model

• Early statistical machine translation (Brown 
et al., 1990)

• Since we do not know true distribution, we 
will approximate Pr(f|e) by p(f|e)
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ê = argmax
e

Pr(e|f)

= argmax
e

Pr(f |e)Pr(e)

Pr(f)

= argmax
e

Pr(f |e)Pr(e)

= argmax
e

p(f |e)p(e)



Source Channel Model

• Translation Model: p(f|e)

• Bilingual correspondence between two 
sentences, f and e

• Usually encode linguistic clues, such as dictionary

• Language Model: p(e)

• “fluency” for the generated sentence

9



Log-linear Model

• Generalization of Source Channel model

• Each feature function captures different aspect of 
translations

• Each feature function is weighted

• Easy to incorporate new features
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p(e|f) = exp (w · h(e, f))∑
e′ exp (w · h(e′, f))



Overview

• Model, Training, Decoding

• Word Alignment

• Phrase-based SMT

• Evaluation

• Optimization
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Word alignment

• One of the fundamental unit of translation

• one-to-one correspondence

• or, many-to-many alignment
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Word alignment models

• IBM Model 4

• Decompose into several models: fertility, 
lexicon, distortion 
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Word alignment models

• IBM 1, IBM 2 and HMM

• More models, such as IBM {3,4,5}
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p(a, f |e) =
J∑

j=1

pd(aj |aj , j)pt(fj |eaj )

pd(aj = 0|aj = i) = p0

pd(aj = i� �= 0|aj = i) ∝ (1− p0)






1 (IBM 1)

c(i� − � jI
J �) (IBM 2)

c(i� − i) (HMM)



Word alignment training

• EM algorithm:

• E-step to compute expected counts

• M-step to perform maximization
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Word alignment training

• Starting from uniform parameter, try 
compute expectation of aligning words

• Based on the expectation, estimate 
parameters

• Iterate....until convergence

16

その 箱 箱 を 開ける 扉 を 開ける



Word alignment model training

• Inside EM-training

• Maximizing log-likelihood over the 
training data
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θ̂ = argmax
θ

�

e,f

p(f ,a|e; θ)

= argmax
θ

�

e,f

log p(f ,a|e; θ)

E-step: q(a; f , e) = p(a|e, f ; θ)
M-step: θ′ = argmax

θ

∑

f ,e,a

q(a; f , e) log p(f , e,a; θ)



Alignment combination 

• IBM Models are limited to one-to-many

• Prone to errors, especially for rare words

• Training in both directions, “heuristically” combine
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Alignment heuristics

• Starts from intersected alignment, greedily 
add union alignments
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Symmetric training

• Alternatives to heuristic approaches, it is possible to 
approximate symmetization during EM-algorithm

• Jointly maximize both directions by approximating 
summation (Liang et al., 2006) 

• Consider additional agreement constraint and 
minimize KL divergence (Ganchev et al., 2008)
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E-step: q(a; f , e) =
1

Zf ,e
p1(a|f , e; θ1) · p2(a|e, f ; θ2)

M-step: θ′ = argmax
θ

∑

f ,e,a

q(a; f , e) log p1(f , e,a; θ1)

+
∑

f ,e,a

q(a; f , e) log p2(f , e,a; θ2)

(Liang et al., 2006)



Decoder for word alignment 
models?

• Possible, but prone to errors

• NP-hard problem (Knight, 1999)

• Many alternative translations with 
insertion/deletion

• Spurious reordering: no distinction 
with local/global reordering
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Overview

• Model, Training, Decoding

• Word Alignment

• Phrase-based SMT

• Evaluation

• Optimization
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Phrase-based SMT

• Directly employing word-based model for decoding 
is not practical

• Many decisions:local/global reordering, insertion/
deletion

• Use phrases to capture local reordering (at least)
23
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Phrase extraction

• Given word alignment, contiguous phrases are 
extracted which do not violate alignment constraint

• Relative count-based estimation + smoothing
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Decoding for phrase-based SMT

• Maximization by log-linear model with hidden 
phrase structures

• Φ: hidden variable for phrasal segmentation

• Max-derivation: searching for the best 
segmentation + translation
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ê = argmax
e

exp (w · h(e,φ, f))�
e�,φ� exp (w · h(e�,φ�, f))

= argmax
e

w · h(e,φ, f)



Decoding for phrase-based SMT

• left-to-right generation + bit-vector for keeping 
track of covered source positions
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Phrase-based decoding

• NP-hard: Traveling salesman problem
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Non-local features

• Example: bigram language model

• Enlarged search space
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Pruning

• Beam search to limit the search space

• Multiple stack to keep hypotheses sharing the 
same # of covered source words
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• Evaluation

• Optimization

30



Evaluation

• How do you know translations are good or 
bad?

• Human judgement

• Fluency/Adequecy, Human Translation 
Error Rate (H-TER), Ranking etc.

• Automatic measures: Bleu, Meteor, TER etc.

• Uses reference translations
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Evaluation: ngram precision
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Evaluation: BLEU

• ngram precision: weighted combination

• brevity penalty: penalize too short sentences

• r = reference length, c = candidate length

• Both factors are computed over the whole document
33

exp

�
N�

n=1

wn log pn +min(1− r
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Overview

• Model, Training, Decoding

• Word Alignment

• Phrase-based SMT

• Evaluation

• Optimization

34



Optimization: MERT

• Minimum Error Rate Training (MERT): 
directly minimize error (or max-BLEU)

• Small # of real valued features (up to 10?)

• Many local-optima, potential overfitting
35

ŵ = argmin
w

S∑

s=1

l(argmax
e

w · h(e, fs), es)



MERT

• Generate and merge nbest list across iterations (line 3 
and 4)

• Powell’s method (or coordinate descent) to perform 
minimization (line 5-10) 36
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MERT: reduction to 1-dim search

• If we fix one parameter, it is one 
dimensional search

• Compute convex hull over a set of lines
37

ê = argmax
e

wm · hm(e, fs)︸ ︷︷ ︸
slope

+wm · hm (e, fs)︸ ︷︷ ︸
constant

wm

wm
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e
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MERT: in practice

• Many random starting points (Macherey et al., 
2008; Moore and Quirk, 2008)

• Many random directions (Macherey et al., 2008)

• Error count smoothing (Cer et al., 2008)

• Regularization (Hayashi et al., 2009)
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Summary

• We quickly reviews basics of SMT:

• Model, Training, Decoding

• Word alignment

• Phrase-based SMT

• Evaluation

• Optimization
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SMT: Softwares
• GIZA++, gizapp, mgiza: translation model

• gizapp: http://code.google.com/p/giza-pp/

• mgiza: http://geek.kyloo.net/software/doku.php

• Alignment by joint training

• Berkeley Aligner: http://code.google.com/p/berkeleyaligner/

• PostCAT: http://www.seas.upenn.edu/~strctlrn/CAT/
CAT.html

• language models

• srilm: http://www.speech.sri.com/projects/srilm/

• phrase-based SMT

• Moses: http://www.statmt.org/moses/
40
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Tree-baed SMT
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Hierarchical Phrase-based SMT
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Syntax-based MT
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Many variants...

• formally syntactical, linguistically syntactical

• dependency structure and constituency structure

• {tree,string}-to-{tree,string}

• In this talk, we will summarize them as “tree-based 
MT” 46

tree (partial) examples

none

source

target

both

Chiang (2007), Zollman and Venugopal (2006)

Huang et al. (2006), Liu et al. (2006), Quirk et al. (2005)

Galley et al. (2004), Shen et al. (2008)

Ding and Palmer (2005), Liu et al. (2009)



Overview

• Backgrounds

• CFG, parsing, hypergraph, deductive 
system, semirings

• Tree-based SMT

• Synchronous-CFG

• String-to-Tree/Tree-to-String

• Bitext parsing
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Backgrounds: CFG
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S → NP VP

NP → NNP

NP → NP PP

NP → DP NN

NNP → language

VP → VBZ NP

VBZ → is

DT → a
...

• parsing = intersection problem



Parsing: CKY

• O(n^3) : For each length n, for each position 
i, for each rule X → Y Z, for each split point k

• (Bottom-up) topological order
49
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Hypergraph

• Generalization of graphs:

• h(e): head node of hyperedge e

• T(e): tail node(s) of hyperedge e, arity = |T(e)|

• hyperedge = instantiated rule

• Represented as and-or graphs
50
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Deductive system

• Parsing algorithm as a deductive system

•  We start from initial items (axioms) until we 
reach a goal item

• If antecedents are proved, its consequent is proved

• deduction = hyperedge
51

.
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.
.

.
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.
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VP1,6︸ ︷︷ ︸
consequent

VP[i,j] → VBZ[j,k] NP[i,k]

(Shieber et al., 1995)



Packed forest

• A polynomial space encoding of exponentially 
many parses by sharing common sub-
derivations

• Single derivation = tree
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Translation as parsing

• CFG to synchronous-CFG as in FST with input/output 
symbols

• Parsing performed over source-yield

• Translation = target-yield of a derivation
53
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Translation as tree-rewrite

• Formalized as tree transducer, tree substitution 
grammar, or simply, tree-rewrite system

• {tree, string}-to-{tree, string} transformation
54

x1

x2

x1

x2

→ x1 x2

(Galley et al., 2004; Liu et al., 2006; Huang et al., 2006)



Weights and Semirings

• associate weights as in WFST

• ⊗ : extension (multiplicative), ⊕ : summary (additive)
55

(Goodman, 1999)

NP
w→

�
NP 1 PP 2 ,PP 2 NP 1

�

x1

x2

w→ x1 x2

.
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..NP2,6 : w ⊗ a⊗ b

.
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.
..NP2,4 : a

.
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NP2,4 : a PP4,6 : b
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Weights and Semirings

• The weight of a hyperedge is dependent on antecedents (non-
monotonic)

• The weight of a derivation is the product of hyperedge weights

• The weight of a vertex is the summary of (sub-)derivation 
weights 56

v

u1 u2
u3 u4

e1 e2

d(v) = (w(e1, u1, u2)⊗ d(u1)⊗ d(u2))

⊕ (w(e2, u3, u4)⊗ d(u3)⊗ d(u4))



Summary

• Synchronous-CFG:  context free rewrite system whose 
right-hand-side is paired

• Special instances:

• Inversion Transductive Grammar (ITG) (Wu, 97)

• Hiero Grammar (Chiang, 2007)

• {tree,string}-to-{tree, string} models

• Recursive tree rewriting

• Formalized as tree transducer or tree substitution 
grammar
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Overview

• Backgrounds

• CFG, parsing, hypergraph, deductive 
system, semirings

• Tree-based SMT

• Synchronous-CFG

• String-to-Tree/Tree-to-String

• Bitext parsing
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Synchronous-CFG

• Derivation: single tree

• Yield: terminals covered by derivation

• source yield = input sentence

• target yield = translation
59
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Synchronous-CFG: Model

• Use only two categories, S and X (Chiang, 2007)

• Or, borrow linguistic categories from syntactic parse 
(Zollman and Venugopal, 2006)
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Synchronous-CFG: Extraction

• From word alignment annotated data, extract phrases

• Sub-phrases treated as non-terminal
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Synchronous-CFG: Extraction

• Borrow syntactic categories eitehr from souce or target parse tree

• When no syntactil categories assigned:

• Try combination(+) or subtraction(/ or \) as in Combinational 
Category Grammar (CCG)
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Synchronous-CFG: Parsing

• translation with SCFG = monolingual parsing

• Parse the input with the source side, build 
projected target side in parallel

• Complexity: the same as CKY algorithm: O(n^3)
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Parsing with non-local features

• As in phrase decoding with non-local features 
(i.e. ngram), it is the same as the CKY algorithm 
with enlarged search space
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Cube Pruning: Basics

• Lazily enumerate top most items

• vertices are sorted according to its score

• pop an item from a priority queu, then expand 65
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(Chiang, 2007; Huang and Chiang, 2007)



Cube Pruning: Grouping

• Simultaneously process the rules sharing 
the same rhs and span by placing “cubes” in 
a priority queue
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Overview

• Backgrounds

• CFG, parsing, hypergraph, deductive 
system, semirings

• Tree-based SMT

• Synchronous-CFG

• String-to-Tree/Tree-to-String

• Bitext parsing
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{Tree, String}-to-{Tree, String}

• Tree rewriting rules: each rule consists of 
(sub-)tree structures

• Flat structure = synchronous-CFG
68
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Rules

• We can handle various transfer rules:

• phrasal translation, non-constituent phrase, non-
contiguous phrase, insertion/deletion, multi-level 
reordering, lexicalized reordering, long distance 
reordering,  etc.
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Rule extraction

• Compute target spans

70(Galley et al., 2004)
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Rule extraction

• Find admissible nodes

71(Galley et al., 2004)
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Rule extraction

• Extract minimum rules

72(Galley et al., 2004)
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Compound rules

• Tree substitution for compound rules, like 
phrases from a sequence of words

73(Galley et al., 2006)
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String-to-{string, tree} decoding

• Similar to SCFG: use flipped string side to 
perform CKY parsing

• After parsing, tree-reranking from forest
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Tree-to-{string, tree} decoding

• Recursively transform by pattern matching over tree

• After matching, forest is rescored (Huang and 
Chiang; 2007) 75
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Overview

• Backgrounds

• CFG, parsing, hypergraph, deductive 
system, semirings

• Tree-based SMT

• Synchronous-CFG

• String-to-Tree/Tree-to-String

• Bitext parsing
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Bitext parsing

• Bitext parsing takes O(n^6) (Wu, 1997)

• For each length n and m, for each position i 
and j, for each rule X ➔ LHS, for each split 
point k and l

• Fast span pruning by O(n^3) (Zhang et al., 2008)
77



Bitext parsing: two-parse

• Parse source side (Intersect with source side)

• Extract target rules from forest (relabel category)

• Parse target side by extracted rules (Compose with target side)

• The same worst case O(n^6), but fast in practice
78
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Summary

• We reviewed some backgrounds on CFG

• Tree based MT are formulated as

• synchronous-CFG or tree-rewrite system

• Cube pruning allows parsing with non-
local features (ngrams)
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Software

• Synchronous-CFG

• Cdec: http://cdec-decoder.org

• Jane: http://www-i6.informatik.rwth-aachen.de/jane/

• Joshua: http://joshua.sourceforge.net

• Moses: http://www.statmt.org/moses/

• {Tree,String}-to-{tree, string}

• Tiburon: http://www.isi.edu/licensed-sw/tiburon/

80

http://cdec-decoder.org
http://cdec-decoder.org
http://www-i6.informatik.rwth-aachen.de/jane/
http://www-i6.informatik.rwth-aachen.de/jane/
http://joshua.sourceforge.net
http://joshua.sourceforge.net
http://www.statmt.org/moses/
http://www.statmt.org/moses/
http://www.isi.edu/licensed-sw/tiburon/
http://www.isi.edu/licensed-sw/tiburon/


References

• D. Chiang, ``Hierarchical phrase-based translation,'' Comput. Linguist., vol. 33, no. 2, pp. 
201--228, 2007.

• D. Wu, ``Stochastic inversion transduction grammars and bilingual parsing of parallel 
corpora,'' Comput. Linguist., vol. 23, no. 3, pp. 377--403, 1997.

• S. M. Shieber, Y. Schabes, and O. C. N. Pereira, ``Principles and implementation of deductive 
parsing,'' Journal of Logic Programming, 1995.

• D. Klein and C. D. Manning, ``Parsing and hypergraphs,'' in In IWPT, pp. 123--134, 2001.

•  J. Goodman, ``Semiring parsing,'' Comput. Linguist., vol. 25, no. 4, pp. 573--605, 1999.

• M. Galley, M. Hopkins, K. Knight, and D. Marcu, ``What's in a translation rule?,'' in HLT-
NAACL 2004: Main Proceedings (D. M. Susan Dumais and S. Roukos, eds.), (Boston, 
Massachusetts, USA), pp. 273--280, Association for Computational Linguistics, May 2 - May 
7 2004.

• M. Galley, J. Graehl, K. Knight, D. Marcu, S. DeNeefe, W. Wang, and I. Thayer, ``Scalable 
inference and training of context-rich syntactic translation models,'' in Proceedings of the 
21st International Conference on Computational Linguistics and 44th Annual Meeting of the 
Association for Computational Linguistics, (Sydney, Australia), pp. 961--968, Association for 
Computational Linguistics, July 2006.

81



References
• A. Zollmann and A. Venugopal, ``Syntax augmented machine translation via chart parsing,'' 

in StatMT '06: Proceedings of the Workshop on Statistical Machine Translation, (Morristown, 
NJ, USA), pp. 138--141, Association for Computational Linguistics, 2006.

• M. Zhang, H. Jiang, A. Aw, H. Li, C. L. Tan, and S. Li, ``A tree sequence alignment-based tree-
to-tree translation model,'' in Proceedings of ACL-08: HLT, (Columbus, Ohio), pp. 559--567, 
Association for Computational Linguistics, June 2008.

• L. Shen, J. Xu, and R. Weischedel, ``A new string-to-dependency machine translation 
algorithm with a target dependency language model,'' in Proceedings of ACL-08: HLT, 
(Columbus, Ohio), pp. 577--585, Association for Computational Linguistics, June 2008.

• Y. Ding and M. Palmer, ``Machine translation using probabilistic synchronous dependency 
insertion grammars,'' in ACL '05: Proceedings of the 43rd Annual Meeting on Association for 
Computational Linguistics, (Morristown, NJ, USA), pp. 541--548, Association for 
Computational Linguistics, 2005.

• Y. Liu, Y. Lu ̈, and Q. Liu, ``Improving tree-to-tree translation with packed forests,'' in 
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th 
International Joint Conference on Natural Language Processing of the AFNLP, (Suntec, 
Singapore), pp. 558--566, Association for Computational Linguistics, August 2009.

• L. Huang, K. Knight, and A. Joshi, ``Statistical syntax-directed translation with extended 
domain of locality,'' in In Proc.AMTA 2006, pp. 66--73, 2006.

82



References
• Y. . Liu, Q. Liu, and S. Lin, ``Tree-to-string alignment template for statistical 

machine translation,'' in Proceedings of the 21st International Conference on 
Computational Linguistics and 44th Annual Meeting of the Association for 
Computational Linguistics, (Sydney, Australia), pp. 609--616, Association for 
Computational Linguistics, July 2006.

• C. Quirk, A. Menezes, and C. Cherry, ``Depen-dency treelet translation: 
syntactically informed phrasal smt,'' in ACL '05: Proceedings of the 43rd Annual 
Meeting on Association for Computational Linguistics, (Morristown, NJ, USA), pp. 
271--279, Association for Computational Linguistics, 2005.

• L. Huang and D. Chiang, ``Better k-best parsing,'' in Proceedings of the Ninth 
InternationalWorkshop on ParsingTechnology, (Vancouver, British Columbia), pp. 
53--64, Association for Computational Linguistics, October 2005.

• H. Zhang, C. Quirk, R. C. Moore, and D. Gildea, ``Bayesian learning of non-
compositional phrases with synchronous parsing,'' in Proceedings of ACL-08: 
HLT, (Columbus, Ohio), pp. 97--105, Association for Computational 
Linguistics, June 2008.

• C. Dyer, ``Two monolingual parses are better than one (synchronous parse),'' 
in Human Language Technologies: The 2010 Annual Conference of the North 
American Chapter of the Association for Computational Linguistics, (Los Angeles, 
California), pp. 263--266, Association for Computational Linguistics, June 
2010. 83



Advanced Topics
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Overview

• More data, better translation?

• Translation by many features

• Single path/derivation to lattice/forest

• Word alignment, phrases, rules
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More data, better translation?

• Do we really need more data?

• Experiments on Japanese-to-English patent data

• Language model: 11G words

• Translation model: 108M words

86



Experiments: Fixed LM

• Fixed LM (11G words, 5-grams), reduced 
TM data (108M words)
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Experiments: Fixed TM

• Fixed TM (108M words), reduced 
LM data (11G words)
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Data handling
• Parallelization (Zhang et al., 2006; Brantz et al., 2007)

• Split data and store in clusters

• Efficient protocol to retrieve data

• Suffix arrays (Callison-burch and Bannard, 2005; 
Zhang and Vogel, 2005; Lopez, 2007)

• raw data + index by suffix array + on-the-fly 
phrase/rule extraction

• Alternative solutions?

• Randomized data structures

• Succinct data structures
89



Randomized data structures

• We do not store exactly, but keep signatures 
(Bloom, 1970)

• Allow “false positives”

• Not inserted, but the signature says, “exists”

• Error rate is bounded theoretically and 
practically

90



Bloom filter

• Insert: set bits by k hash functions for m bits array

• Query: test by k hash functions

• False positives are controlled by k and m
91
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Randomized LM

• Store quantized log-count:

• Returns expected count: 

• False positives are further controlled by ngram property:

• If an n-gram exists, lower order (n-1)-grams exist.

• If an n-gram exists, its count is smaller than or equal to its 
lower order (n-1)-grams 92

qc(x) = 1 + �logb c(x)�

E [c(x)|qc(x) = j] =
bj−1 + bj − 1

2

1: for j = 1... do
2: for i = 1...k do
3: if BF [hi({x, j})] = 0 then
4: return E [c(x)|qc(x) = j − 1]
5: end if
6: end for
7: end for (Talbot and Osborne, 2007a, 2007b)



Randomized LM: Experiments

• French-English Europarl data

93

n Types Mem. Gzip’d BLEU
3 5.9M 174Mb 51Mb 28.54
4 14.1M 477Mb 129Mb 28.99
5 24.2M 924Mb 238Mb 29.07

Table 1: WB-smoothed SRILM baseline models.

We assign a small cache to the BF-LM models (be-
tween 1 and 2MBs depending on the order of the
model) to store recently retrieved statistics and de-
rived probabilities. Translation takes between 2 to 5
times longer using the BF-LMs as compared to the
corresponding SRILM models.

4.2 Machine translation experiments

Our first set of experiments examines the relation-
ship between memory allocated to the BF-LM and
translation performance for a 3-gram and a 5-gram
WB smoothed BF-LM. In these experiments we use
the log-linear weights of the baseline model to avoid
variation in translation performance due to differ-
ences in the solutions found by MER training: this
allows us to focus solely on the quality of each BF-
LM’s approximation of the baseline. These exper-
iments consider various settings of the base for the
logarithm used during quantisation (b in Eq. (1)).

We also analyse these results in terms of the re-
lationships between BLEU score and the underlying
error rate of the BF-LM and the number of bits as-
signed per n-gram in the baseline model.

MER optimised BLEU scores on the test set are
then given for a range of BF-LMs.

4.3 Mean squared error experiments

Our second set of experiments focuses on the accu-
racy with which the BF-LM can reproduce the base-
line model’s distribution. Unfortunately, perplex-
ity or related information-theoretic quantities are not
applicable in this case since the BF-LM is not guar-
anteed to produce a properly normalised distribu-
tion. Instead we evaluate the mean squared error
(MSE) between the log-probabilites assigned by the
baseline model and by BF-LMs to n-grams in the
English portion of our development set; we also con-
sider the relation between MSE and the BLEU score
from the experiments above.
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Figure 1: WB-smoothed 3-gram model (Europarl).

4.4 Analysis of BF-LM framework

Our third set of experiments evaluates the impact of
the use of upper bounds between related statistics on
translation performance. Here the standard model
that makes use of these bounds to reduce the a pri-
ori negative probability is compared to a model that
queries the filter in a memoryless fashion.3

We then present details of the memory savings ob-
tained by the use of proxy relations for the models
used here.

5 Results

5.1 Machine translation experiments

Figures 1 and 2 show the relationship between trans-
lation performance as measured by BLEU and the
memory assigned to the BF respectively for WB-
smoothed 3-gram and 5-gram BF-LMs. There is a
clear degradation in translation performance as the
memory assigned to the filter is reduced. Models
using a higher quantisation base approach their opti-
mal performance faster; this is because these more
coarse-grained quantisation schemes store fewer
items in the filter and therefore have lower underly-
ing false positive rates for a given amount of mem-
ory.

Figure 3 presents these results in terms of the re-
lationship between translation performance and the
false positive rate of the underlying BF. We can see
that for a given false positive rate, the more coarse-
grained quantisation schemes (e.g., base 3) perform

3In both cases we apply ‘sanity check’ bounds to ensure that
none of the ratios in the WB formula (Eq. 3) are greater than 1.
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Other randomized variants

• Perfect hash function based randomized storage 
(Talbot and Brants, 2008)

• Bloomier filter which allows dynamic insertion/
deletion (Levenberg and Osborne, 2009)
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Succinct data structures

• In NLP applications (including MT), models are 
compactly stored by trie structures (ngrams, 
phrase tables, grammar etc.)

• Trie structure (pointers) can be succinctly encoded 
by 2M + O(M) bits, approaching information-
theoretical bounds (Jacobson, 1989):

• An example: Level-Order Unary Degree Sequences 
(LOUDS) (Jacobson, 1989; Delpratt et al., 2006)
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LOUDS

• Traverse in level order, left-
to-right, emit 1s and 0 at 
each node

• 2M + 1 bits
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LOUDS: traversal

• select1(x): left-most 
position of the x-th bits

• rank1(x): # of bits to the 
left of, and including, x  
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LOUDS: traversal

• parent(9):

• first_child(9):
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Succinct ngram language model

• Remove root (2 bits)

• Remove the last zeros 
(5 bits)

• Remove unigram bits 
(4 + 1 bits)
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Web-1T ngrams

• Web 1T ngrams from Google (Chinese, 
English, Japanese)
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Software

• Randomized LM

• randlm: http://sourceforge.net/projects/randlm/

• (generic) succinct storage

• tx: http://code.google.com/p/tx-trie/

• taiju: http://code.google.com/p/taiju/
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Overview

• More data, better translation?

• Translation by many features

• Single path/derivation to lattice/forest

• Word alignment, phrases, rules
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Model with many features

• We want fine-grained translations

• Many binary features to represent complex decision

• MERT can handle small # of features (around 10+)

• Can we scale to millions for better translations?

103



Large margin training

• Major difference to MERT is the explicit L{1,2} 
regularizer and regression term

• Very slow convergence by SMO... faster 
algorithms?
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ês = argmax
e

w · h(e, fs)

ls = l(ês)− l(e∗s)

∆hs = h(ês, fs)− h(e∗, fs)

ŵ = argmin
w

λ

2
||w||2 +

S∑

s=1

max (ls −w ·∆hs)



(Averaged) Perceptron

• Scales very well to very large data and large 
feature set

• Liang et al. (2006) reported good performance
105

Require: {(fs, es)}Ss=1
1: w1 = {0}
2: t = 1
3: for 1...N do
4: s ∼ random(1, S)
5: ê = GEN(fs,wt−1)
6: if l(ê, es) ≥ 0 then
7: wt+1 = wt + h(es, fs)− h(ê, fs)
8: t = t+ 1
9: end if

10: end for
11: return wt or 1

N

�N
i=1 w

j



MIRA

• line 7 of weight update is replaced by the solution 
of the above equation

• Similar to large margin constraints

• Experimented by: Watanabe et al. (2007); Chiang 
et al. (2008); Chiang et al. (2009)
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ŵ = argmin
w

λ

2
||w′ −w||2 +max (ls −w′ ·∆hs)

ês = argmax
e

w · h(e, fs)

ls = l(ês)− l(e∗s)

∆hs = h(ês, fs)− h(e∗, fs)



Correct translations?

• Problem: we cannot generate translations exactly 
the same as reference translations.

• Solution: select translations among nbests with 
“error bias” (Chiang et al., 2008; Chian et al., 2009)
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ês = argmax
e

w · h(e, fs)− BLEUs(e)

e∗s = argmax
e

w · h(e, fs) + BLEUs(e)



MIRA: Experiments

• Consistent improvements over MERT

• Scales well to millions of features 
(Watanabe et al., 2007)
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System Training Features # Tune Test
Hiero MERT baseline 11 35.4 36.1

MIRA syntax, distortion 56 35.9 36.9∗

syntax, distortion, discount 61 36.6 37.3∗∗

all source-side, discount 10990 38.4 37.6∗∗

Syntax MERT baseline 25 38.6 39.5
MIRA baseline 25 38.5 39.8∗

overlap 132 38.7 39.9∗

node count 136 38.7 40.0∗∗

all target-side, discount 283 39.6 40.6∗∗

Table 1: Adding new features with MIRA significantly improves translation accuracy. Scores are case-insensitive IBM
Bʟ�� scores. ∗ or ∗∗ = significantly better than MERT baseline (p < 0.05 or 0.01, respectively).

the syntax-based system, we ran a reimplementation
of the Collins parser (Collins, 1997) on the English
half of the bitext to produce parse trees, then restruc-
tured and relabeled them as described in Section 3.2.
Syntax-based rule extraction was performed on a 65
million word subset of the training data. For Hiero,
rules with up to two nonterminals were extracted
from a 38 million word subset and phrasal rules were
extracted from the remainder of the training data.

We trained three 5-gram language models: one on
the English half of the bitext, used by both systems,
one on one billion words of English, used by the
syntax-based system, and one on two billion words
of English, used by Hiero. Modified Kneser-Ney
smoothing (Chen and Goodman, 1998) was applied
to all language models. The language models are
represented using randomized data structures simi-
lar to those of Talbot et al. (2007).

Our tuning set (2010 sentences) and test set (1994
sentences) were drawn from newswire data from the
NIST 2004 and 2005 evaluations and the GALE pro-
gram (with no overlap at either the segment or doc-
ument level). For the source-side syntax features,
we used the Berkeley parser (Petrov et al., 2006) to
parse the Chinese side of both sets.

We implemented the source-side context features
for Hiero and the target-side syntax features for the
syntax-based system, and the discount features for
both. We then ran MIRA on the tuning set with 20
parallel learners for Hiero and 73 parallel learners
for the syntax-based system. We chose a stopping it-
eration based on the Bʟ�� score on the tuning set,
and used the averaged feature weights from all iter-

Syntax-based Hiero
count weight count weight
1 +1.28 1 +2.23
2 +0.35 2 +0.77
3–5 −0.73 3 +0.54
6–10 −0.64 4 +0.29

5+ −0.02

Table 2: Weights learned for discount features. Nega-
tive weights indicate bonuses; positive weights indicate
penalties.

ations of all learners to decode the test set.
The results (Table 1) show significant improve-

ments in both systems (p < 0.01) over already very
strong MERT baselines. Adding the source-side and
discount features to Hiero yields a +1.5 Bʟ�� im-
provement, and adding the target-side syntax and
discount features to the syntax-based system yields a
+1.1 Bʟ�� improvement. The results also show that
for Hiero, the various classes of features contributed
roughly equally; for the syntax-based system, we see
that two of the feature classes make small contribu-
tions but time constraints unfortunately did not per-
mit isolated testing of all feature classes.

6 Analysis

How did the various new features improve the trans-
lation quality of our two systems? We begin by ex-
amining the discount features. For these features,
we used slightly different schemes for the two sys-
tems, shown in Table 2 with their learned feature
weights. We see in both cases that one-count rules
are strongly penalized, as expected.

222
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Overview

• More data, better translation?

• Translation by many features

• Single path/derivation to lattice/forest

• Word alignment, phrases, rules
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Forest approaches

• single {tree, string} input and single {tree,s 
tring} output

• As in lattice/word graph, we can compactly 
represent alternative derivations by forest

• Translation from forest, Extraction from 
forest, MBR by forest, MERT by forest
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Translation from forest

• (Try) avoid errors propagated from parse tree, and 
make decision later

• Tree rewrite on forest, yielding larger translation 
forest 111

言語は の

である

言語は の

である

言語は の

である

(Mi et al., 2008)



Translation from forest

• Faster than translating each of k-best trees

• Better translations from packed forest
112

on target translation. The derivation probability con-
ditioned on 1-best tree, P(d | T ), should now be
replaced by P(d | Hp) where Hp is the parse forest,
which decomposes into the product of probabilities
of translation rules r ∈ d:

P(d | Hp) =
�

r∈d

P(r) (6)

where each P(r) is the product of five probabilities:

P(r) = P(t | s)λ4 · Plex(t | s)λ5 ·

P(s | t)λ6 · Plex(s | t)λ7 · P(t | Hp)
λ8

.

(7)

Here t and s are the source-side tree and target-
side string of rule r, respectively, P(t | s) and
P(s | t) are the two translation probabilities, and
Plex(·) are the lexical probabilities. The only extra
term in forest-based decoding is P(t | Hp) denot-
ing the source side parsing probability of the current
translation rule r in the parse forest, which is the
product of probabilities of each parse hyperedge ep

covered in the pattern-match of t against Hp (which
can be recorded at conversion time):

P(t | Hp) =
�

ep∈Hp, ep covered by t

P(ep). (8)

4.1 Data preparation
Our experiments are on Chinese-to-English transla-
tion, and we use the Chinese parser of Xiong et al.
(2005) to parse the source side of the bitext. Follow-
ing Huang (2008), we modify the parser to output a
packed forest for each sentence.
Our training corpus consists of 31,011 sentence

pairs with 0.8M Chinese words and 0.9M English
words. We first word-align them by GIZA++ refined
by “diagand” from Koehn et al. (2003), and apply
the tree-to-string rule extraction algorithm (Galley et
al., 2006; Liu et al., 2006), which resulted in 346K
translation rules. Note that our rule extraction is still
done on 1-best parses, while decoding is on k-best
parses or packed forests. We also use the SRI Lan-
guage Modeling Toolkit (Stolcke, 2002) to train a
trigram language model with Kneser-Ney smooth-
ing on the English side of the bitext.
We use the 2002 NIST MT Evaluation test set as

our development set (878 sentences) and the 2005
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Figure 4: Comparison of decoding on forests with decod-
ing on k-best trees.

NIST MT Evaluation test set as our test set (1082
sentences), with on average 28.28 and 26.31 words
per sentence, respectively. We evaluate the transla-
tion quality using the case-sensitive BLEU-4 met-
ric (Papineni et al., 2002). We use the standard min-
imum error-rate training (Och, 2003) to tune the fea-
ture weights to maximize the system’s BLEU score
on the dev set. On dev and test sets, we prune the
Chinese parse forests by the forest pruning algo-
rithm in Section 3.4 with a threshold of p = 12, and
then convert them into translation forests using the
algorithm in Section 3.2. To increase the coverage
of the rule set, we also introduce a default transla-
tion hyperedge for each parse hyperedge by mono-
tonically translating each tail node, so that we can
always at least get a complete translation in the end.

4.2 Results
The BLEU score of the baseline 1-best decoding is
0.2325, which is consistent with the result of 0.2302
in (Liu et al., 2007) on the same training, develop-
ment and test sets, and with the same rule extrac-
tion procedure. The corresponding BLEU score of
Pharaoh (Koehn, 2004) is 0.2182 on this dataset.
Figure 4 compares forest decoding with decoding

on k-best trees in terms of speed and quality. Us-
ing more than one parse tree apparently improves the
BLEU score, but at the cost of much slower decod-
ing, since each of the top-k trees has to be decoded
individually although they share many common sub-
trees. Forest decoding, by contrast, is much faster

197

(Mi et al., 2008)



Extraction from forest

• Extract more rules 
from forest

113(Mi and Huang, 2008)

言語 は コミュニケーション の 道具 で ある



Extraction from forest

• Faster than extraction from individual trees

• Better translations from larger forest
114

Our experiments will use both default 1-best decod-
ing and forest-based decoding. As we will see in the
next section, the best result comes when we combine
the merits of both, i.e., using forests in both rule ex-
traction and decoding.
There is also a parallel work on extracting rules

from k-best parses and k-best alignments (Venu-
gopal et al., 2008), but both their experiments and
our own below confirm that extraction on k-best
parses is neither efficient nor effective.

5 Experiments

5.1 System
Our experiments are on Chinese-to-English trans-
lation based on a tree-to-string system similar to
(Huang et al., 2006; Liu et al., 2006). Given a 1-
best tree T , the decoder searches for the best deriva-
tion d∗ among the set of all possible derivations D:

d∗ = arg max
d∈D

λ0 log P(d | T ) + λ1 log Plm(τ(d))

+ λ2|d| + λ3|τ(d)|
(7)

where the first two terms are translation and lan-
guage model probabilities, τ(d) is the target string
(English sentence) for derivation d, and the last two
terms are derivation and translation length penalties,
respectively. The conditional probability P(d | T )
decomposes into the product of rule probabilities:

P(d | T ) =
�

r∈d

P(r). (8)

Each P(r) is in turn a product of five probabilities:

P(r) =P(r | lhs(r))λ4 · P(r | rhs(r))λ5

· P(r | root(lhs(r)))λ6

· Plex(lhs(r) | rhs(r))λ7

· Plex(rhs(r) | lhs(r))λ8

(9)

where the first three are conditional probabilities
based on fractional counts of rules defined in Sec-
tion 3.3, and the last two are lexical probabilities.
These parameters λ1 . . .λ8 are tuned by minimum
error rate training (Och, 2003) on the dev sets. We
refer readers to Mi et al. (2008) for details of the
decoding algorithm.
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Figure 6: Comparison of extraction time and BLEU
score: forest-based vs.1-best and 30-best.

rules from... extraction decoding BLEU
1-best trees 0.24 1.74 0.2430
30-best trees 5.56 3.31 0.2488
forest: pe=8 2.36 3.40 0.2533
Pharaoh - - 0.2297

Table 2: Results with different rule extraction methods.
Extraction and decoding columns are running times in
secs per 1000 sentences and per sentence, respectively.

We use the Chinese parser of Xiong et al. (2005)
to parse the source side of the bitext. Following
Huang (2008), we also modify this parser to out-
put a packed forest for each sentence, which can
be pruned by the marginal probability-based inside-
outside algorithm (Charniak and Johnson, 2005;
Huang, 2008). We will first report results trained
on a small-scaled dataset with detailed analysis, and
then scale to a larger one, where we also combine the
technique of forest-based decoding (Mi et al., 2008).

5.2 Results and Analysis on Small Data

To test the effect of forest-based rule extraction, we
parse the training set into parse forests and use three
levels of pruning thresholds: pe = 2, 5, 8.
Figure 6 plots the extraction speed and transla-

tion quality of forest-based extraction with various
pruning thresholds, compared to 1-best and 30-best
baselines. Using more than one parse tree apparently
improves the BLEU score, but at the cost of much
slower extraction, since each of the top-k trees has to
be processed individually although they share many

212



MBR by forest

• Instead of maximization, we reduce expected loss 
(MBR, Minimum Bayes Risk)

• Conventional approaches enumerate over n-best-
list (Kumar and Byrne, 2004)
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ê = argmin
e

EP (e�|f) [l(e; e
�)]

= argmin
e

�

e�

l(e; e�)P (e�|f)



MBR by linear BLEU

• When computing expected loss (= 1.0 - BLEU) 
over lattice/forest, use linearly approximated BLEU 
(Tromble et al., 2008, Kumar et al., 2009)
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l(e; e�) = θ0|e|+
�

w∈N

θ|w|cw(e)δw(e
�)

ê = argmax
e∈G

θ0|e|+
�

w

θ|w|cw(e)p(w|G)



MBR by expected BLEU

• As an alternative to MBR, compute similarities by 
expected ngram statistics (DeNero et al., 2009)

• expected ngram counts for e’ are collected from 
hypergraph T
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BLEU(e; e�) = exp

�
min(1− |e�|

|e| ) +
1

4

4�

n=1

log pn(e, e
�)

�

pn(e, e
�) =

�
w∈T ,|w|=n min(c(e, w), c(e�, w))

�
w∈T ,|w|=n c(e, w)



MERT by forest

• MERT is performed over forest, not n-best

• Hyperedge: combine lines from antecedents

• Node: Compute convex hulls for maximization
118

(Kumar et al., 2009)

2,5
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コミュニケーション
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Overview

• More data, better translation?

• Translation by many features

• Single path/derivation to lattice/forest

• Word alignment, phrases, rules
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Word alignment, phrases, rules

• Better word alignment learning?

• We learned “unsupervised” word alignment 
training

• What if “gold standard” exists?

• Better phrases, rules?

• We can extract phrases/rules from word 
alignment annotated data

• Can we directly induce phrases/rules?

120



Supervised word alignment

• IBM Models and HMM model can learn 
from bilingual sentences

• No control on “how word will be aligned”

• Assuming small data with word alignment 
annotation

• max-matching, ITG, Block-ITG, ITG+bi-
parse
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Max-matching alignment

• Word alignment as a max-flow problem over 
bipartite graph (Taskar et al., 2005)

• Solved by the linear program

• Max-margin training for parameter estimation
122

max
z

∑

j,k

sjkzjk

s.t.
∑

j

zjk ≤ 1,
∑

k

zjk ≤ 1, 0 ≤ zjk ≤ 1

sjk = w · h(ej , fk)

zjk



ITG alignment

• Binary branching rules

• non-ambiguous deletion by Haghighi et al. (2009)

• Leraning by EM-algorithm (Wu, 1997), or, max-
margin training (Cherry and Lin, 2006)
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X →
�
X 1 X2 ,X 1 X 2

�

X →
�
X 1 X2 ,X 2 X 1

�

X → �e, f�

X → [X X]

X → �X X�
X → e/f



ITG-alignment: Experiments

• Experiments with dependency constraint

• Evaluated by alignment error rate (AER)

• Still, it is not clear whether improved 
alignment implies improved BLEU
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Table 1: The effect of hard cohesion constraints on
a simple unsupervised link score.

Search Prec Rec AER
Matching 0.723 0.845 0.231
ITG 0.764 0.860 0.200
D-ITG 0.830 0.873 0.153

5.2 Hard Constraint Performance
The goal of this experiment is to empirically con-
firm that the English spans marked invalid by
Section 3.2’s dependency-augmented ITG provide
useful guidance to an aligner. To do so, we
compare an ITG with hard cohesion constraints,
an unconstrained ITG, and a weighted maximum
matching aligner. All aligners use the same sim-
ple objective function. They maximize summed
link values v(l), where v(l) is defined as follows
for an l = (Ej , Fk):

v(l) = φ2(Ej , Fk)− 10−5abs
�

j

|E| −
k

|F |

�

All three aligners link based on φ2 correlation
scores, breaking ties in favor of closer pairs. This
allows us to evaluate the hard constraints outside
the context of supervised learning.
Table 1 shows the results of this experiment.

We can see that switching the search method
from weighted maximum matching to a cohesion-
constrained ITG (D-ITG) has produced a 34% rel-
ative reduction in alignment error rate. The bulk
of this improvement results from a substantial in-
crease in precision, though recall has also gone up.
This indicates that these cohesion constraints are a
strong alignment feature. The ITG row shows that
the weaker ITG constraints are also valuable, but
the cohesion constraint still improves on them.

5.3 Soft Constraint Performance
We now test the performance of our SVM ITG
with soft cohesion constraint, or SD-ITG, which
is described in Section 4.2.2. We will test against
two strong baselines. The first baseline,matching
is the matching SVM described in Section 4.2.1,
which is a re-implementation of the state-of-the-
art work in (Taskar et al., 2005)3. The second
baseline, D-ITG is an ITG aligner with hard co-
hesion constraints, but which uses the weights

3Though it is arguably lacking one of its strongest fea-
tures: the output of GIZA++ (Och and Ney, 2003)

Table 2: The performance of SVM-trained align-
ers with various degrees of cohesion constraint.

Method Prec Rec AER
Matching 0.916 0.860 0.110
D-ITG 0.940 0.854 0.100
SD-ITG 0.944 0.878 0.086

trained by the matching SVM to assign link val-
ues. This is the most straight-forward way to com-
bine discriminative training with the hard syntactic
constraints.
The results are shown in Table 2. The first thing

to note is that our Matching baseline is achieving
scores in line with (Taskar et al., 2005), which re-
ports an AER of 0.107 using similar features and
the same training and test sets.
The effect of the hard cohesion constraint has

been greatly diminished after discriminative train-
ing. Matching and D-ITG correspond to the the
entries of the same name in Table 1, only with a
much stronger, learned value function v(l). How-
ever, in place of a 34% relative error reduction, the
hard constraints in the D-ITG produce only a 9%
reduction from 0.110 to 0.100. Also note that this
time the hard constraints result in a reduction in
recall. This indicates that the hard cohesion con-
straint is providing little guidance not provided by
other features, and that it is actually eliminating
more sure links than it is helping to find.
The soft-constrained SD-ITG, which has access

to the D-ITG’s invalid spans as a feature during
SVM training, is fairing substantially better. Its
AER of 0.086 represents a 22% relative error re-
duction compared to the matching system. The
improved error rate is caused by gains in both pre-
cision and recall. This indicates that the invalid
span feature is doing more than just ruling out
links; perhaps it is de-emphasizing another, less
accurate feature’s role. The SD-ITG overrides the
cohesion constraint in only 41 of the 347 test sen-
tences, so we can see that it is indeed a soft con-
straint: it is obeyed nearly all the time, but it can be
broken when necessary. The SD-ITG achieves by
far the strongest ITG alignment result reported on
this French-English set; surpassing the 0.16 AER
reported in (Zhang and Gildea, 2004).
Training times for this system are quite low; un-

supervised statistics can be collected quickly over
a large set, while only the 100-sentence training
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Block ITG-alignment

• Allow phrasal alignment by adding phrasal 
lexical rules (Haghighi et al., 2009)
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(a) Max-Matching Alignment (b) Block ITG Alignment

Figure 1: Best alignments from (a) 1-1 matchings and (b) block ITG (BITG) families respectively. The 1-1
matching is the best possible alignment in the model family, but cannot capture the fact that Indonesia is rendered
as two words in Chinese or that in court is rendered as a single word in Chinese.

dynamic program allows us to utilize likelihood-
based objectives for learning alignment models
(see Section 4).

Using the same heuristic Dice potentials on
the Hansards test set, the maximal scoring align-
ment from AITG yields 28.4 AER—2.4 better
than A1-1 —indicating that ITG can be beneficial
as a constraint on heuristic alignments.

2.3 Block ITG
An important alignment pattern disallowed by
A1-1 is the many-to-one alignment block. While
not prevalent in our hand-aligned French Hansards
dataset, blocks occur frequently in our hand-
aligned Chinese-English NIST data. Figure 1
contains an example. Extending A1-1 to include
blocks is problematic, because finding a maximal
1-1 matching over phrases is NP-hard (DeNero
and Klein, 2008).

With ITG, it is relatively easy to allow contigu-
ous many-to-one alignment blocks without added
complexity.3 This is accomplished by adding ad-
ditional unary terminal productions aligning a for-
eign phrase to a single English terminal or vice
versa. We will use BITG to refer to this block
ITG variant and ABITG to refer to the alignment
family, which is neither contained in nor contains
A1-1. For this alignment family, we expand the
alignment potential decomposition in Equation (1)
to incorporate block potentials sef and sef which
represent English and foreign many-to-one align-
ment blocks, respectively.

One way to evaluate alignment families is to
3In our experiments we limited the block size to 4.

consider their oracle AER. In the 2002 NIST
Chinese-English hand-aligned data (see Sec-
tion 6.2), we constructed oracle alignment poten-
tials as follows: sij is set to +1 if (i, j) is a sure
or possible alignment in the hand-aligned data, -
1 otherwise. All null potentials (si� and s�j) are
set to 0. A max-matching under these potentials is
generally a minimal loss alignment in the family.
The oracle AER computed in this was is 10.1 for
A1-1 and 10.2 for AITG. The ABITG alignment
family has an oracle AER of 1.2. These basic ex-
periments show that AITG outperforms A1-1 for
heuristic alignments, and ABITG provide a much
closer fit to true Chinese-English alignments than
A1-1.

3 Margin-Based Training

In this and the next section, we discuss learning
alignment potentials. As input, we have a training
set D = (x1,a∗1), . . . , (xn,a∗n) of hand-aligned
data, where x refers to a sentence pair. We will as-
sume the score of a alignment is given as a linear
function of a feature vector φ(x,a). We will fur-
ther assume the feature representation of an align-
ment, φ(x,a) decomposes as in Equation (1),

�

(i,j)∈a

φij(x) +
�

i/∈a

φi�(x) +
�

j /∈a

φ�j(x)

In the framework of loss-augmented margin
learning, we seek a w such that w · φ(x,a∗) is
larger than w · φ(x,a) + L(a,a∗) for all a in an
alignment family, where L(a,a∗) is the loss be-
tween a proposed alignment a and the gold align-
ment a∗. As in Taskar et al. (2005), we utilize a
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Figure 1: Best alignments from (a) 1-1 matchings and (b) block ITG (BITG) families respectively. The 1-1
matching is the best possible alignment in the model family, but cannot capture the fact that Indonesia is rendered
as two words in Chinese or that in court is rendered as a single word in Chinese.

dynamic program allows us to utilize likelihood-
based objectives for learning alignment models
(see Section 4).

Using the same heuristic Dice potentials on
the Hansards test set, the maximal scoring align-
ment from AITG yields 28.4 AER—2.4 better
than A1-1 —indicating that ITG can be beneficial
as a constraint on heuristic alignments.

2.3 Block ITG
An important alignment pattern disallowed by
A1-1 is the many-to-one alignment block. While
not prevalent in our hand-aligned French Hansards
dataset, blocks occur frequently in our hand-
aligned Chinese-English NIST data. Figure 1
contains an example. Extending A1-1 to include
blocks is problematic, because finding a maximal
1-1 matching over phrases is NP-hard (DeNero
and Klein, 2008).

With ITG, it is relatively easy to allow contigu-
ous many-to-one alignment blocks without added
complexity.3 This is accomplished by adding ad-
ditional unary terminal productions aligning a for-
eign phrase to a single English terminal or vice
versa. We will use BITG to refer to this block
ITG variant and ABITG to refer to the alignment
family, which is neither contained in nor contains
A1-1. For this alignment family, we expand the
alignment potential decomposition in Equation (1)
to incorporate block potentials sef and sef which
represent English and foreign many-to-one align-
ment blocks, respectively.

One way to evaluate alignment families is to
3In our experiments we limited the block size to 4.

consider their oracle AER. In the 2002 NIST
Chinese-English hand-aligned data (see Sec-
tion 6.2), we constructed oracle alignment poten-
tials as follows: sij is set to +1 if (i, j) is a sure
or possible alignment in the hand-aligned data, -
1 otherwise. All null potentials (si� and s�j) are
set to 0. A max-matching under these potentials is
generally a minimal loss alignment in the family.
The oracle AER computed in this was is 10.1 for
A1-1 and 10.2 for AITG. The ABITG alignment
family has an oracle AER of 1.2. These basic ex-
periments show that AITG outperforms A1-1 for
heuristic alignments, and ABITG provide a much
closer fit to true Chinese-English alignments than
A1-1.

3 Margin-Based Training

In this and the next section, we discuss learning
alignment potentials. As input, we have a training
set D = (x1,a∗1), . . . , (xn,a∗n) of hand-aligned
data, where x refers to a sentence pair. We will as-
sume the score of a alignment is given as a linear
function of a feature vector φ(x,a). We will fur-
ther assume the feature representation of an align-
ment, φ(x,a) decomposes as in Equation (1),

�

(i,j)∈a

φij(x) +
�

i/∈a

φi�(x) +
�

j /∈a

φ�j(x)

In the framework of loss-augmented margin
learning, we seek a w such that w · φ(x,a∗) is
larger than w · φ(x,a) + L(a,a∗) for all a in an
alignment family, where L(a,a∗) is the loss be-
tween a proposed alignment a and the gold align-
ment a∗. As in Taskar et al. (2005), we utilize a
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Block ITG-alignment: Experiments

• Chinese/English translation

• Large margin-based MIRA training and MaxEnt 
traning

• The first work to show gain by alignment improved 
BLEU

126

• English Block: [the X, X], [in X of, X]

• Chinese Block: [� X, X] [X�, X]

For English blocks, for example, these features
capture the behavior of phrases such as in spite

of or in front of that are rendered as one word in
Chinese. For Chinese blocks, these features cap-
ture the behavior of phrases containing classifier
phrases like�� or��, which are rendered as
English indefinite determiners.

The right-hand three columns in Table 2 present
supervised results on our Chinese English data set
using block features. We note that almost all of
our performance gains (relative to both the HMM
and 1-1 matchings) come from BITG and block
features. The maximum likelihood-trained nor-
mal form ITG model outperforms the HMM, even
without including any features derived from the
unlabeled data. Once we include the posteriors
of the HMM as a feature, the AER decreases to
14.4. The previous best AER result on this data set
is 15.9 from Ayan and Dorr (2006), who trained
stacked neural networks based on GIZA++ align-
ments. Our results are not directly comparable
(they used more labeled data, but did not have the
HMM posteriors as an input feature).

6.3 End-To-End MT Experiments
We further evaluated our alignments in an end-to-
end Chinese to English translation task using the
publicly available hierarchical pipeline JosHUa
(Li and Khudanpur, 2008). The pipeline extracts
a Hiero-style synchronous context-free grammar
(Chiang, 2007), employs suffix-array based rule
extraction (Lopez, 2007), and tunes model pa-
rameters with minimum error rate training (Och,
2003). We trained on the FBIS corpus using sen-
tences up to length 40, which includes 2.7 million
English words. We used a 5-gram language model
trained on 126 million words of the Xinhua section
of the English Gigaword corpus, estimated with
SRILM (Stolcke, 2002). We tuned on 300 sen-
tences of the NIST MT04 test set.

Results on the NIST MT05 test set appear in
Table 3. We compared four sets of alignments.
The GIZA++ alignments7 are combined across di-
rections with the grow-diag-final heuristic, which
outperformed the union. The joint HMM align-
ments are generated from competitive posterior

7We used a standard training regimen: 5 iterations of
model 1, 5 iterations of HMM, 3 iterations of Model 3, and 3
iterations of Model 4.

Alignments Translations
Model Prec Rec Rules BLEU
GIZA++ 62 84 1.9M 23.22
Joint HMM 79 77 4.0M 23.05
Viterbi ITG 90 80 3.8M 24.28
Posterior ITG 81 83 4.2M 24.32

Table 3: Results on the NIST MT05 Chinese-English
test set show that our ITG alignments yield improve-
ments in translation quality.

thresholding (DeNero and Klein, 2007). The ITG
Viterbi alignments are the Viterbi output of the
ITG model with all features, trained to maximize
log likelihood. The ITG Posterior alignments
result from applying competitive thresholding to
alignment posteriors under the ITG model. Our
supervised ITG model gave a 1.1 BLEU increase
over GIZA++.

7 Conclusion

This work presented the first large-scale applica-
tion of ITG to discriminative word alignment. We
empirically investigated the performance of con-
ditional likelihood training of ITG word aligners
under simple and normal form grammars. We
showed that through the combination of relaxed
learning objectives, many-to-one block alignment
potential, and efficient pruning, ITG models can
yield state-of-the art word alignments, even when
the underlying gold alignments are highly non-
ITG. Our models yielded the lowest published er-
ror for Chinese-English alignment and an increase
in downstream translation performance.
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ITG + Bi-parsing alignment

• ITG-alignment with syntactic parses from source/
target

• Asynchronous features: no direct pairing features

• Mean field inference for approximate estimation 127

(Burkett et al., 2010)

NP VP

S

NP

VP

IP

b0

b1

b2

Features

!( (IP, b0, S), s, s’ )

!( (NP, b1, NP), s, s’ )

!( (VP, b2, VP), s, s’ )

NP VP

S

NP

IP

b0

b1

b2

VP

AP

FeaturesFeatures

      (IP, s)        (b0, s, s’)

      (NP, s)        (b1, s, s’)

      (VP, s)        (b2, s, s’)

      (S, s’)       (IP, b0)

      (NP, s’)       (b0, S)

      (AP, s’)       (b1, NP)

      (VP, s’)       (IP, b0, S)

Parsing

Alignment

Synchronization

φ

φ

φ

φ

φ

φ

φ

φ

φ

φ

φ�

φ�
φ��

φ�

(a) Synchronous Rule (b) Asynchronous Rule

Figure 1: Source trees, t (right), alignments, a (grid), and target trees, t� (top), and feature decompositions for syn-
chronous (a) and weakly synchronous (b) grammars. Features always condition on bispans and/or anchored syntactic
productions, but weakly synchronous grammars permit more general decompositions.

example, in Figure 2, the word alignment is ITG-
derivable, and each of the colored rectangles is a bi-
span in that derivation.

There are no additional constraints beyond the
independent, internal structural constraints on t, a,
and t�. This decoupling permits derivations like that
in Figure 1(b), where the top-level syntactic nodes
align, but their children are allowed to diverge. With
the three structures separated, our first model is a
completely factored decomposition of (1).

Formally, we represent a source tree t as a set of
nodes {n}, each node representing a labeled span.
Likewise, a target tree t� is a set of nodes {n�}.2 We
represent alignments a as sets of bispans {b}, indi-
cated by rectangles in Figure 1.3 Using this notation,
the initial model has the following form:

P(t, a, t�|s, s�) ∝ exp




�

n∈t

θ�φF (n, s)+

�

b∈a

θ�φA(b, s, s�)+
�

n�∈t�

θ�φE(n�, s�)





(2)

Here φF (n, s) indicates a vector of source node fea-
tures, φE(n�, s�) is a vector of target node features,
and φA(b, s, s�) is a vector of alignment bispan fea-
tures. Of course, this model is completely asyn-

2For expositional clarity, we describe n and n� as labeled
spans only. However, in general, features that depend on n or
n� are permitted to depend on the entire rule, and do in our final
system.

3Alignments a link arbitrary spans of s and s� (including
non-constituents and individual words). We discuss the relation
to word-level alignments in Section 4.

chronous so far, and fails to couple the trees and
alignments at all. To permit soft constraints between
the three structures we are modeling, we add a set of
synchronization features.

For n ∈ t and b ∈ a, we say that n ✄ b if n and b
both map onto the same span of s. We define b ✁ n�

analogously for n� ∈ t�. We now consider three
different types of synchronization features. Source-
alignment synchronization features φ✄(n, b) are ex-
tracted whenever n ✄ b. Similarly, target-alignment
features φ✁(b, n�) are extracted if b ✁ n�. These
features capture phenomena like that of bispan b7

in Figure 2. Here the Chinese noun� synchronizes
with the ITG derivation, but the English projection
of b7 is a distituent. Finally, we extract source-target
features φ��(n, b, n�) whenever n✄b✁n�. These fea-
tures capture complete bispan synchrony (as in bi-
span b8) and can be expressed over triples (n, b, n�)
which happen to align, allowing us to reward syn-
chrony, but not requiring it. All of these licensing
conditions are illustrated in Figure 1(b).

With these features added, the final form of the
model is:

P(t, a, t�|s, s�) ∝ exp




�

n∈t

θ�φF (n, s)+

�

b∈a

θ�φA(b, s, s�)+
�

n�∈t�

θ�φE(n�, s�)+

�

n✄b

θ�φ✄(n, b)+
�

b✁n�

θ�φ✁(b, n�)+

�

n✄b✁n�

θ�φ��(n, b, n�)





(3)
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ITG + Bi-parsing alignment

• Gain from Haghighi et al. (2009)

128

(Burkett et al., 2010)

Test Results
Ch F1 Eng F1 Tot F1

Monolingual 83.6 81.2 82.5
Reranker 86.0 83.8 84.9
Joint 85.7 84.5 85.1

Table 1: Parsing results. Our joint model has the highest
reported F1 for English-Chinese bilingual parsing.

Test Results
Precision Recall AER F1

HMM 86.0 58.4 30.0 69.5
ITG 86.8 73.4 20.2 79.5
Joint 85.5 84.6 14.9 85.0

Table 2: Word alignment results. Our joint model has the
highest reported F1 for English-Chinese word alignment.

the baseline unsupervised HMM word aligner and
to the English-Chinese ITG-based word aligner
of Haghighi et al. (2009). The results are in Table 2.

As can be seen, our model makes substantial im-
provements over the independent models. For pars-
ing, we improve absolute F1 over the monolingual
parsers by 2.1 in Chinese, and by 3.3 in English.
For word alignment, we improve absolute F1 by 5.5
over the non-syntactic ITG word aligner. In addi-
tion, our English parsing results are better than those
of the Burkett and Klein (2008) bilingual reranker,
the current top-performing English-Chinese bilin-
gual parser, despite ours using a much simpler set
of synchronization features.

8.3 Machine Translation
We further tested our alignments by using them to
train the Joshua machine translation system (Li and
Khudanpur, 2008). Table 3 describes the results of
our experiments. For all of the systems, we tuned

Rules Tune Test
HMM 1.1M 29.0 29.4
ITG 1.5M 29.9 30.4†

Joint 1.5M 29.6 30.6

Table 3: Tune and test BLEU results for machine transla-
tion systems built with different alignment tools. † indi-
cates a statistically significant difference between a sys-
tem’s test performance and the one above it.

on 1000 sentences of the NIST 2004 and 2005 ma-
chine translation evaluations, and tested on 400 sen-
tences of the NIST 2006 MT evaluation. Our train-
ing set consisted of 250k sentences of newswire dis-
tributed with the GALE project, all of which were
sub-sampled to have high Ngram overlap with the
tune and test sets. All of our sentences were of
length at most 40 words. When building the trans-
lation grammars, we used Joshua’s default “tight”
phrase extraction option. We ran MERT for 4 itera-
tions, optimizing 20 weight vectors per iteration on
a 200-best list.

Table 3 gives the results. On the test set, we also
ran the approximate randomization test suggested by
Riezler and Maxwell (2005). We found that our joint
parsing and alignment system significantly outper-
formed the HMM aligner, but the improvement over
the ITG aligner was not statistically significant.

9 Conclusion

The quality of statistical machine translation mod-
els depends crucially on the quality of word align-
ments and syntactic parses for the bilingual training
corpus. Our work presented the first joint model
for parsing and alignment, demonstrating that we
can improve results on both of these tasks, as well
as on downstream machine translation, by allowing
parsers and word aligners to simultaneously inform
one another. Crucial to this improved performance
is a notion of weak synchronization, which allows
our model to learn when pieces of a grammar are
synchronized and when they are not. Although ex-
act inference in the weakly synchronized model is
intractable, we developed a mean field approximate
inference scheme based on monolingual and bitext
parsing, allowing for efficient inference.
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HMM 86.0 58.4 30.0 69.5
ITG 86.8 73.4 20.2 79.5
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highest reported F1 for English-Chinese word alignment.

the baseline unsupervised HMM word aligner and
to the English-Chinese ITG-based word aligner
of Haghighi et al. (2009). The results are in Table 2.

As can be seen, our model makes substantial im-
provements over the independent models. For pars-
ing, we improve absolute F1 over the monolingual
parsers by 2.1 in Chinese, and by 3.3 in English.
For word alignment, we improve absolute F1 by 5.5
over the non-syntactic ITG word aligner. In addi-
tion, our English parsing results are better than those
of the Burkett and Klein (2008) bilingual reranker,
the current top-performing English-Chinese bilin-
gual parser, despite ours using a much simpler set
of synchronization features.

8.3 Machine Translation
We further tested our alignments by using them to
train the Joshua machine translation system (Li and
Khudanpur, 2008). Table 3 describes the results of
our experiments. For all of the systems, we tuned

Rules Tune Test
HMM 1.1M 29.0 29.4
ITG 1.5M 29.9 30.4†

Joint 1.5M 29.6 30.6

Table 3: Tune and test BLEU results for machine transla-
tion systems built with different alignment tools. † indi-
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on 1000 sentences of the NIST 2004 and 2005 ma-
chine translation evaluations, and tested on 400 sen-
tences of the NIST 2006 MT evaluation. Our train-
ing set consisted of 250k sentences of newswire dis-
tributed with the GALE project, all of which were
sub-sampled to have high Ngram overlap with the
tune and test sets. All of our sentences were of
length at most 40 words. When building the trans-
lation grammars, we used Joshua’s default “tight”
phrase extraction option. We ran MERT for 4 itera-
tions, optimizing 20 weight vectors per iteration on
a 200-best list.

Table 3 gives the results. On the test set, we also
ran the approximate randomization test suggested by
Riezler and Maxwell (2005). We found that our joint
parsing and alignment system significantly outper-
formed the HMM aligner, but the improvement over
the ITG aligner was not statistically significant.

9 Conclusion

The quality of statistical machine translation mod-
els depends crucially on the quality of word align-
ments and syntactic parses for the bilingual training
corpus. Our work presented the first joint model
for parsing and alignment, demonstrating that we
can improve results on both of these tasks, as well
as on downstream machine translation, by allowing
parsers and word aligners to simultaneously inform
one another. Crucial to this improved performance
is a notion of weak synchronization, which allows
our model to learn when pieces of a grammar are
synchronized and when they are not. Although ex-
act inference in the weakly synchronized model is
intractable, we developed a mean field approximate
inference scheme based on monolingual and bitext
parsing, allowing for efficient inference.
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Direct phrase/rule induction

• We have separated word alignment and 
phrase/rule induction

• Can we learn directly?
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Direct phrase training

• Instead of training from word alignment 
data, why not directly train phrases, rules?

• Many work: Marcu and Wong (2002) etc.

• Some of the problems:

• Very expensive summation

• EM-algorithm w/o control by prior belief: 
use of non-parametric Bayesian approach
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Optimization/Summation

• We need summation for training parameters

• Margin-based or Loss-based learning avoid this problem

• DP-based algorithm is applicable to tractable models

• Our choice: tractable simpler (and often approximated) 
model or complex model w/o approximation?

131

optimization summation

tractable

intractable

A*/Knuth/Viterbi forward-backward/
inside-outside

beam search ???



Monte Carlo algorithms

• Instead of DP based summing, sampling
132
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Markov Chain Monte Carlo

• Sampling by a series of small changes
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Summation problem: Summary

• MCMC for intractable models

• Define your sampling operations

• Examples:

• Phrase-based models (DeNero et al., 2008; Arun 
et al., 2009)

• Synchronous-CFG (Blunsom et al., 2009)

• string-to-tree (Cohn and Blunsom, 2009)
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MCMC: efficient samplings
• Block sampling (Cohn and Blunsom, 2010):

• Allow larger changes by simultaneously perform 
small changes

• Slice sampling (Blunsom and Cohn, 2010):

• Together with block sampling, pruning parameter 
determined by model

• Randomized pruning (Bouchard-Coˆte ́ et al., 
2009):

• Sampling over “invalid spans” instead of trees
135



Summary

• Promising direction by nonparametric 
Bayesian approaches

• Sampling methods replace DP-based 
training

• Alternative: Variational approaches inspired 
by DP-based training
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Conclusion
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Outlook: Progress in 20 years

• Modeling: word to phrase, tree, forest

• Search: even with complex structural modeling, we 
can search efficiently

• Training: large contribution from Machine Learning 
techniques

• Computer Science: CPU, memory, parallelization, 
data structure
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Outlook: Future?

• More data with less structure or less data 
with more structures

• General translation or task-specific translation

• Your contributions!
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