NTT Statistical Machine Translation for IVVSLT 2006

Taro Watanabe, Jun Suzuki, Hajime Tsukada and Hideki Isozaki NTT Communication Science Labs. {taro,jun,tsukada,isozaki}@cslab.kecl.ntt.co.jp

Overview

- Hierarchical Phrase-based SMT achieved by:
 - Target normalized form
 - Earley-style top-down parsing
- Reranking via voted perceptron

Hierarchical Phrase-based SMT

Simplified Grammar

```
X_{\square} 份子 ||| members of X_{\square} 定将 X_{\square} ||| decided to X_{\square} ||| is X_{\square} X_{\square} 是 X_{\square} ||| is X_{\square} X_{\square} X_{\square} X_{\square} no longer X_{\square} X_{\square} X_{\square} X_{\square} One of the most X_{\square} X_{\square} X_{\square} 表示 哀悼 ||| condolences to the X_{\square} X_{\square}
```

- Target normalized form
 - Phrase-prefixed structure for target-side (GNF-like structure)
 - Arbitrary structure for source-side
 - Constrained rule-extraction

Decoding by Top-down parsing

- Earley-style parsing on source-side
 - Straight-forward intersection with ngram
- Similar to a phrase-based decoding algorithm

Log-linear Approach

$$\hat{e}_{1}^{I} = \underset{e_{1}^{I}}{\operatorname{argmax}} \frac{\exp\left(\sum_{m=1}^{M} \lambda_{m} h_{m}(e_{1}^{I}, f_{1}^{J})\right)}{\sum_{e'_{1}^{I'}} \exp\left(\sum_{m=1}^{M} \lambda_{m} h_{m}(e'_{1}^{I'}, f_{1}^{J})\right)}$$

- Mixed-case 5-gram
- Rule translation probabilities
- Lexical weights
- Insertion/deletion penalties
- Backtrack penalties
- # of words/# of rules

Reranking by Voted Perceptron

- Ranking Voted Perceptron with BLEU-based updates
- Features
 - SC: Scores from the baseline decoder
 - AL:Word-pairs from IBM Model Viterbi alignment
 - RU: Rules & Rule pattern

```
住所 を ここ に 書い て下さい \langle X_{1} て下さい , Please X_{1}\rangle \langle X_{1} 書い , write X_{1}\rangle \langle X_{1} を X_{2} , down X_{1} X_{2}\rangle  住所 , your address \rangle Please write down your address here \langle ここ に, here \rangle
```

Reranking Algorithm

```
D = \{D^1, ..., D^M\}: Development set
C^m = \{c_1^m, ..., c_N^m\}: The original N-best list of D^m
X^m = \{x_1^m, ..., x_N^m\}: (reordered) N-best list of D^m
Ranking(W, C^m): returns N-best list of C^m reordered based on the score, s_n^m =
\langle W, \phi(c_n^m) \rangle
for t = 1, ..., T do
  for m = 1, ..., M do
     X^m \leftarrow Ranking(W, C^m)
     for i = 1, ..., |X^m| do
        for j = i + 1, ..., |X^m| do
          if BLEU(x_i^m) > BLEU(x_i^m) \& WER(x_i^m) \le WER(x_i^m) then
             W = W + (BLEU(x_i^m) - BLEU(x_i^m)) \times (\phi(x_i^m) - \phi(x_i^m))
          end if
        end for
                           Update all incorrect ranking pair
     end for
                           through pair-wise comparison
     V_t = W
  end for
```

end for

Approximated BLEU

- Very frequent updates required:
 - Computation of doc-set BLEU is impossible
- Sentence-wise BLEU?
 - Bad objective: 27.78 to 25.95 in MTEval 2006
- Approximated BLEU:
 - doc-set BLEU of I-best
 - Compute difference for each segment

Tasks

- ASR's I-best translation
- Case-restoration/punctuation-insertion required
- Preprocessing:
 - Case/punctuation-preserved English-side + lower-cased/punctuation-removed source-side
 - Induce multiple alignments from differently preprocessed corpora (punct-removed, etc.)
 - Aggregate rules from differently aligned corpora

Official Results

		BLEU	NIST	METEOR	mPER	mWER
ar-en	spoken	20.71 (5th)	4.84	43.97	64.67	56.65
	text	22.65 (5th)	5.33	47.76	62.79	54.15
it-en	spoken	27.69 (7th)	6.70	56.07	57.00	48.13
	text	34.49 (5th)	7.83	64.31	50.79	41.57
ja-en	spoken	19.84 (2nd)	5.48	45.00	71.08	55.12
	text	22.03 (2nd)	5.91	48.77	69.02	52.17
zh-en	spontaneous	15.59 (6th)	4.18	39.46	70.20	59.72
	spoken	18.34 (5th)	4.53	42.15	68.44	57.71
	text	21.35 (5th)	5.13	47.43	65.47	53.70

Remarks: reranked with only SC features

Results on Hierarchical Phrase-based SMT

Results on Reranking

Conclusion

- Better than non-hierarchical translation
- Benefit from sparse features (RU,AL) in reranking
- Hierarchical Phrase-based SMT as a baseline
 - Traget normalized form + top-down parsing
- Reranking by Voted Perceptron
 - BLEU-based updates + Approximated-BLEU