
Structures in Statistical
Machine Translation

Taro Watanabe @ NICT
taro . watanabe @ nict . go . jp

Machine Translation

• We learn parameters from data assuming a
“model”

• Decode by the learned parameters

data

learner

model

decoder

The United Inspection Department
of Heishantou Port has shortened
the procedures for leaving and
entering the territory from originally
2 - 3 days to 1 day.

黑山头口岸联检部門将原来要二至
三天办完的出入境手续改为一天办
完。

X

Channel Model

Process Y

3

Channel Model

• Employed in: ASR, OCR, MT...

+ noise

channelY Xencoder decoder

4

ŷ = argmax
y

Pr(y|x)

= argmax
y

Pr(x|y)Pr(y)

Pr(x)

= argmax
y

Pr(x|y)Pr(y)
f = source
e = target ê = argmax

e
Pr(f |e)Pr(e)

Translation Model

• Translation Model: adequacy of translation

• Language Model: grammatical correctness, consistent
style, fluency

Language ModelTranslation Model

ˆ = Pr(|) Pr()

(Brown et al., 1990)

5

Language Model

• Likelihood of a string of English words

• Usually modeled by ngrams

Pr(I do not know) = ?

Pr(I not do know) = ?

W = w1, w2, w3, · · ·wN

p(W) = p(w1, w2, w3, · · · , wN)

= p(w1)p(w2|w1)p(w3|w1, w2) · · ·
p(wN |w1, w2, w3, · · · , wN�1)

6

ngram Language Model

• Markov assumption: only n-word history is
memorized

• Bigram:

• Training: Maximum likelihood estimate +
smoothing (Good-Turing, Witten-Bell,
Kneser-Ney etc.)

p(I do not know) = p(I)p(do|I)p(not|do)p(know|not)

Word-based MT

(Brown et al., 1993)

Phrase-based MT

(Koehn et al., 2003)

Hierarchical PBMT

(Chiang, 2007)

Syntax-based MT

(Galley et al., 2004)

Structures in SMT

• Tutorial

• Phrase-based MT

• Tree-based MT

• Syntactic Structures in System Combination

Why Phrases?

• Use phrases as a unit of translations

• Directly handle many-to-many word
correspondence + local reordering

• Allow local context + non-compositional phrases

• Employed in many systems, including Google,
NICT(VoiceTra, TexTra) and open-source, Moses
(http://www.statmt.org/moses/)

13

http://www.statmt.org/moses/
http://www.statmt.org/moses/

Phrase-based Model

• Generative story:

• f is segmented into phrases

• Each phrase is translated

• Translated phrases are reordered
14

ウィンドー の 品物 を 見せ て下さい

Phrase-based Model

• Maximization of a log-linear combination of
multiple feature functions h(e, Φ, f)

• Φ: phrasal partition of f and e

• w: weight of feature functions

ê = argmax
e

exp
�
w� · h(e, �, f)

�
�

e�,�� exp (w� · h(e�, ��, f))

= argmax
e

w� · h(e, �, f)

15

Questions

• Training: How to learn phrases and
parameters (Φ and h)?

• Decoding (or search): How to find the best
translation (argmax)?

• Tuning (or optimization): How to learn the
scaling of features (w)?

16

ê = argmax
e

w� · h(e, �, f)

Training

• Learn phrase pairs from

• A standard heuristic approach

• Compute word alignment

• Extract phrase pairs

• Score phrases

D = 〈F , E〉

17

(Koehn et al., 2003)

Word alignment

(Example from Huang and Chiang, 2007)

18

Extract Phrase Pairs

• From word alignment, extract a phrase pair
consistent with word alignment

19

Exhaustive Extraction

• Exhaustively extract phrases from f, e
20

Features from Phrases

• Collect all the phrase pairs from the data

• Maximum likelihood estimates by relative
frequencies

• Employ scores in two directions

log p�(f̄ |ē) = log
count(ē, f̄)�
f̄ � count(ē, f̄ �)

log p�(ē|f̄) = log
count(ē, f̄)�
ē� count(ē�, f̄)

21

Features from Alignment

• Lexical weighing which scores by word translation
probabilities

• Idea: counts for rare phrase pairs are unreliable

• Smoothing effect by decomposing into word pairs

log plex(f̄ |ē, ā) = log

|ē|�

i

1

| {j|(i, j) � ā} |
�

�(i,j)�ā

t(ei|fj)

log plex(ē|f̄ , ā) = log

|f̄ |�

j

1

| {i|(j, i) � ā} |
�

�(j,i)�ā

t(fj |ei)

22

Features for Distortion

• Distance-based distortion modeling

+2

±0

-5

d(f , �, e) = | + 2| + |0| + | � 5| = 7
23

Features for Reordering

• Fine grained reordering features:

• Either monotone, swap, discontinuous

log po(o � {m, s, d} |f̄ , ē)

d

m

d

24

Other Features

• log of ngram language model(s)

• word count: bias for ngram language model(s)

• phrase count: shorter or longer phrases

25

Direct Training

• Instead of word alignment + extraction pipeline,
directly learn phrase-pairs (Marcu and Wong, 2002)

• Bayesian approach + blocked Gibbs sampling to learn
parameters (Blunsom et al., 2009)

• Exhaustively memorize longer phrases (Neubig et
al., 2011)

26

Questions

• Training: How to learn phrases and
parameters (Φ and h)?

• Decoding (or search): How to find the best
translation (argmax)?

• Tuning (or optimization): How to learn the
scaling of features (w)?

27

ê = argmax
e

w� · h(e, �, f)

Decoding

• Given an input sentence f and phrasal model h and w,
seek e with the highest score

• Potential errors:

• Search error: we cannot find the best scored
hypothesis

• Translation error: highest scored hypothesis is bad

ê = argmax
e

exp
�
w� · h(e, �, f)

�
�

e�,�� exp (w� · h(e�, ��, f))

= argmax
e

w� · h(e, �, f)

28

Enumerate Phrase Pairs

• Given a input sentence f, we can enumerate all
possible phrases that match with the source side

• Choose the best phrase pair + ordering

bushi yu shalong juxing le huitan

Bush and

with

Sharon

held

held a talk

talkshold

with Sharon

Bush and

talked

meeting

29

Phrase-based Search Space

• Node: bit-vector representing covered source words

• Edge: phrasal translations, strictly left-to-right

• Search space: O(2n),Time: O(2nn2) (Why?)

bushi yu shalong juxing le huitan

Bush held a talk

Sharon

●----- ●--●●●

●-●●●●

with
●●-●●●

Sharon
--●---

held
--●●●-

and

talks
--●●●● Bush

30

Traveling Salesman Problem
• NP-hard problem: visit each city only once

• MT as a Traveling Salesman Problem (Knight, 1999)

• Each source word corresponds to a city

• A Dynamic Programming solution:

• State: visited cities (bit-vector)

• Search space: O(2n)

• Distortion limit to reduce search space

●----- ●----●i.e. long distortion:
31

Non-local features

• Features that requires scoring out of phrases: bigram
language model

• Additional state representation required for “future
scoring”: 1-word for bigram LM

• Space: O(2n Vm-1), Time: O(2nVm-1n2) for m-gram LM

------:<s>

Bush
held a talk

●-----:Bush ●--●●●:talk

Sharon
--●---:Sharon held --●●●-:held

●--●●-:held
held

p(&YWL|�W�)

p(LIPH|&YWL)

p(7LEVSR|�W�)
p(LIPH|7LEVSR)

p(LIPH|&YWL)p(E|LIPH)p(XEPO|E)

32

Phrase-based Decoding

• Re-organize the search space by the cardinality (= #
of covered source words)

• Expand hypotheses from the smallest cardinality first

●-----

●--●●●--●---

--●●●-

●--●●-

-----●
-----●

---●-- --●--●

●----●
●--●--

--●--●
●----●

--●●●-

--●●-●

●--●-● ●--●●●
●-●-●●
●-●●●-

33

Pruning

• Prune hypotheses in a bin sharing the same
cardinality

• Expand survived hypotheses only

●-----

●--●●●--●---

--●●●-

●--●●-

-----●
-----●

---●-- --●--●

●----●
●--●--

--●--●
●----●

--●●●-

--●●-●

●--●-● ●--●●●
●-●-●●
●-●●●-

34

Questions

• Training: How to learn phrases and
parameters (Φ and h)?

• Decoding (or search): How to find the best
translation (argmax)?

• Tuning (or optimization): How to learn the
scaling of features (w)?

35

ê = argmax
e

w� · h(e, �, f)

Tuning

• Three popular objectives (in SMT) for tuning w

• (Direct) Error Minimization (Och, 2003)

• Maximum Entropy (Och and Ney, 2002)

• Large Margin (Watanabe et al., 2007; Chiang
et al., 2008; Hopkins and May, 2011)

ê = argmax
e

exp
�
w� · h(e, �, f)

�
�

e�,�� exp (w� · h(e�, ��, f))

= argmax
e

w� · h(e, �, f)

36

(Direct) Minimum Error

• MERT (Minimum ERror Training)

• Standard in SMT (but not in other NLP areas, such
as tagging etc.)

• We can incorporate arbitrary error functions, l

• “Summation” can be replaced by document-wise
BLEU specific summation

• 10+ real valued features

ŵ = argmin
w

S∑

s=1

l(argmax
e

w! · h(e, fs), es)

37

n-best Approximation

• N iterations, with each iteration, n-bests are
generated and merged

• K iterations, with each iteration, M dimensions are
tried (M = # of features), and w is updated

1: procedure MERT({(es, fs)}S
s=1)

2: for n = 1...N do
3: Decode and generate nbest list using w
4: Merge nbest list
5: for k = 1...K do
6: for each parameter m = 1...M do
7: Solve one dimensional optimization
8: end for
9: update w

10: end for
11: end for
12: end procedure

38

Efficient Line Search

• If we choose one dimension m, and others fixed,
we can treat each hypothesis e as a “line”

• Compute convex hull of a set of “lines”

wm

sc
or

e

wm

er
ro

r
ê = argmax

e
w!

m · hm(e, fs)︸ ︷︷ ︸
slope

+w!
m · hm (e, fs)︸ ︷︷ ︸

constant

39

Error Surface

 9400

 9410

 9420

 9430

 9440

 9450

 9460

 9470

 9480

-4 -3 -2 -1 0 1 2 3 4

er
ro

r c
ou

nt

unsmoothed error count
smoothed error rate (alpha=3)

 9405

 9410

 9415

 9420

 9425

 9430

 9435

 9440

 9445

 9450

-4 -3 -2 -1 0 1 2 3 4

er
ro

r c
ou

nt

unsmoothed error count
smoothed error rate (alpha=3)

Figure 1: Shape of error count and smoothed error count for two different model parameters. These curves
have been computed on the development corpus (see Section 7, Table 1) using alternatives per source
sentence. The smoothed error count has been computed with a smoothing parameter .

and try to find a better scoring point in the param-
eter space by making a one-dimensional line min-
imization along the directions given by optimizing
one parameter while keeping all other parameters
fixed. To avoid finding a poor local optimum, we
start from different initial parameter values. A major
problem with the standard approach is the fact that
grid-based line optimization is hard to adjust such
that both good performance and efficient search are
guaranteed. If a fine-grained grid is used then the
algorithm is slow. If a large grid is used then the
optimal solution might be missed.

In the following, we describe a new algorithm for
efficient line optimization of the unsmoothed error
count (Eq. 5) using a log-linear model (Eq. 3) which
is guaranteed to find the optimal solution. The new
algorithm is much faster and more stable than the
grid-based line optimization method.

Computing the most probable sentence out of a
set of candidate translation (see
Eq. 6) along a line with parameter
results in an optimization problem of the following

functional form:

(8)

Here, and are constants with respect to .
Hence, every candidate translation in corresponds
to a line. The function

(9)

is piecewise linear (Papineni, 1999). This allows us
to compute an efficient exhaustive representation of
that function.
In the following, we sketch the new algorithm

to optimize Eq. 5: We compute the ordered se-
quence of linear intervals constituting for ev-
ery sentence together with the incremental change
in error count from the previous to the next inter-
val. Hence, we obtain for every sentence a se-
quence which denote the
interval boundaries and a corresponding sequence
for the change in error count involved at the corre-
sponding interval boundary .
Here, denotes the change in the error count at

(Och, 2003)

MERT in Practice
• Many random starting points (Macherey et al., 2008;

Moore and Quirk, 2008)

• Many random directions (Macherey et al., 2008)

• Error count smoothing (Cer et al., 2008)

• Regularization (Hayashi et al., 2009)

• Multi-dimensional search by efficiently computing
convex hull (Galley and Quirk, 2011)

• MERT at least 3 times, and report average BLEU
(Clark et al., 2011)

41

Maximum Entropy

• Minimize the negative log-likelihood of generating
good translations (Och and Ney, 2002)

• ORACLE is a subset of GEN, a set of hypotheses
with minimum loss

• Optimized by L-BFGS or SGD

• Potentially large # of features as in NLP tasks

ŵ = argmin
w

λ

2
||w||2 −

S∑

s=1

log

∑

e∗∈ORACLE(fs)

exp
(
w" · h(e∗, fs)

)

∑

e′∈GEN(fs)

exp
(
w" · h(e′, fs)

)

42

Why Not MaxEnt?

• In Och and Ney (2002), they used

• WER to select oracle translations

• n-best merging approach to approximate
summation as in MERT

Table 3: Effect of different error criteria used in training on the test corpus. Note that better results corre-
spond to larger BLEU and NIST scores and to smaller error rates. Italic numbers refer to results for which
the difference to the best result (indicated in bold) is not statistically significant.

error criterion used in training mWER [%] mPER [%] BLEU [%] NIST # words
confidence intervals +/- 2.7 +/- 1.9 +/- 0.8 +/- 0.12 -

MMI 68.0 51.0 11.3 5.76 21933
mWER 68.3 50.2 13.5 6.28 22914

smoothed-mWER 68.2 50.2 13.2 6.27 22902
mPER 70.2 49.8 15.2 6.71 24399

smoothed-mPER 70.0 49.7 15.2 6.69 24198
BLEU 76.1 53.2 17.2 6.66 28002
NIST 73.3 51.5 16.4 6.80 26602

recognition community (Duda and Hart, 1973;
Juang et al., 1995; Schlüter and Ney, 2001).
Paciorek and Rosenfeld (2000) use minimum clas-
sification error training for optimizing parameters
of a whole-sentence maximum entropy language
model.
A technically very different approach that has a

similar goal is the minimum Bayes risk approach, in
which an optimal decision rule with respect to an
application specific risk/loss function is used, which
will normally differ from Eq. 3. The loss function is
either identical or closely related to the final evalua-
tion criterion. In contrast to the approach presented
in this paper, the training criterion and the statisti-
cal models used remain unchanged in the minimum
Bayes risk approach. In the field of natural language
processing this approach has been applied for exam-
ple in parsing (Goodman, 1996) and word alignment
(Kumar and Byrne, 2002).

9 Conclusions

We presented alternative training criteria for log-
linear statistical machine translation models which
are directly related to translation quality: an un-
smoothed error count and a smoothed error count
on a development corpus. For the unsmoothed er-
ror count, we presented a new line optimization al-
gorithm which can efficiently find the optimal solu-
tion along a line. We showed that this approach ob-
tains significantly better results than using the MMI
training criterion (with our method to define pseudo-
references) and that optimizing error rate as part of
the training criterion helps to obtain better error rate

on unseen test data. As a result, we expect that ac-
tual ’true’ translation quality is improved, as previ-
ous work has shown that for some evaluation cri-
teria there is a correlation with human subjective
evaluation of fluency and adequacy (Papineni et al.,
2001; Doddington, 2002). However, the different
evaluation criteria yield quite different results on our
Chinese–English translation task and therefore we
expect that not all of them correlate equally well to
human translation quality.
The following important questions should be an-

swered in the future:

How many parameters can be reliably esti-
mated using unsmoothed minimum error rate
criteria using a given development corpus size?
We expect that directly optimizing error rate for
many more parameters would lead to serious
overfitting problems. Is it possible to optimize
more parameters using the smoothed error rate
criterion?

Which error rate should be optimized during
training? This relates to the important question
of which automatic evaluation measure is opti-
mally correlated to human assessment of trans-
lation quality.

Note, that this approach can be applied to any
evaluation criterion. Hence, if an improved auto-
matic evaluation criterion is developed that has an
even better correlation with human judgments than
BLEU and NIST, we can plug this alternative cri-
terion directly into the training procedure and opti-
mize the model parameters for it. This means that

43

Large Margin

• Structured output learning approach

• Very hard to enumerate all possible e’ and oracle
translations e*

• Solution: online learning or n-best approximation

w� · h(e�
s, fs) � w� · h(e�

s, fs) � l(e�
s, e

�
s) � �s,e�

s ,e�
s

e�
s � ORACLE(fs)

e�
s � GEN(fs)

ŵ = argmin
w

λ

2
||w||2 +

S∑

s=1

∑

e∗
s

∑

e′
s

ξs,e∗
s ,e

′
s

44

Online Learning

• Averaged perceptron (Liang et al., 2006)

• Scale to large data, but each iteration requires
decoding + weight update

Require: {(fs, es)}S
s=1

1: w1 = {0}
2: t = 1
3: for 1...N do
4: s � random(1, S)
5: ê � GEN(fs,wt�1)
6: if l(ê, es) � 0 then
7: wt+1 = wt + h(es, fs) � h(ê, fs)
8: t = t + 1
9: end if

10: end for
11: return wt or 1

N

�N
i=1 wj

45

Online Large Margin

• line 7 is replaced by the solution of the above
equation

• Still, requires decoding + update in each iteration

• Hard to determine when to stop (watch another
dev data)

ŵ = argmin
w′

λ

2
||w′ −w||2 +max

(
ls −w′" ·∆hs

)

ês = argmax
e

w� · h(e, fs)

ls = l(ês) � l(e�
s)

�hs = h(ês, fs) � h(e�, fs)

46

Ranking Approach

• An n-best approximation approach (Hopkins and
May, 2011)

• Pair-wise comparison of all the hypotheses

• logistic-loss (or 0-1 loss): use an off-the-shelf binary
classifier

ŵ = argmin
w

λ

2
||w||2 +

S∑

s=1

∑

e′′
s

∑

e′
s

ξs,e′′
s ,e

′
s

� log
�
1 + exp(�w� · �he��

s ,e�
s
)
�

� ��s,e��
s ,e�

s

e��
s , e�

s � GEN(fs)

l(e�
s, e

��
s) > 0

�he��
s ,e�

s
= h(e��

s , fs) � h(e�
s, fs)

47

Results

• Reranking is competitive to MERT and MIRA,
and scales to large # of features

 20

 21

 22

 23

 24

 25

 26

 0 5 10 15 20 25 30

4-
re

f B
LE

U

Iteration

Urdu-English SBMT baseline feature tuning

TUNE

TEST

MERT
MIRA

PRO

 20

 21

 22

 23

 24

 25

 26

 0 5 10 15 20 25 30

4-
re

f B
LE

U

Iteration

Urdu-English SBMT extended feature tuning

TUNE

TEST MIRA
PRO

Figure 5: Comparison of MERT, PRO, and MIRA on tuning Urdu-English SBMT systems, and test results at every
iteration. PRO performs comparably to MERT and MIRA.

We used the following feature classes in PBMT
extended scenarios only:

• Unigram word pair features for the 80 most fre-
quent words in both languages plus tokens for
unaligned and all other words (cf. Watanabe et
al. (2007), Section 3.2.1)11

• Source, target, and joint phrase length fea-
tures from 1 to 7, e.g. “tgt=4”, “src=2”, and
“src/tgt=2,4”

The feature classes and number of features used
within those classes for each language pair are sum-
marized in Table 3.

5.4 Tuning settings
Each of the three approaches we compare in this
study has various details associated with it that may
prove useful to those wishing to reproduce our re-
sults. We list choices made for the various tuning
methods here, and note that all our decisions were
made in keeping with best practices for each algo-
rithm.

5.4.1 MERT
We used David Chiang’s CMERT implementation

of MERT that is available with the Moses system
(Koehn et al., 2007). We ran MERT for up to 30 it-
erations, using k = 1500, and stopping early when

11This constitutes 6,723 features in principle (822 � 1 since
“unaligned-unaligned” is not considered) but in practice far
fewer co-occurrences were seen. Table 3 shows the number of
actual unigram word pair features observed in data.

the accumulated k-best list does not change in an it-
eration. In every tuning iteration we ran MERT once
with weights initialized to the last iteration’s chosen
weight set and 19 times with random weights, and
chose the the best of the 20 ending points according
to G on the development set. The G we optimize
is tokenized, lower-cased 4-gram BLEU (Papineni et
al., 2002).

5.4.2 MIRA
We for the most part follow the MIRA algorithm

for machine translation as described by Chiang et al.
(2009)12 but instead of using the 10-best of each of
the best hw, hw +g, and hw-g, we use the 30-best
according to hw.13 We use the same sentence-level
BLEU calculated in the context of previous 1-best
translations as Chiang et al. (2008b; 2009). We ran
MIRA for 30 iterations.

5.4.3 PRO
We used the MegaM classifier and sampled as de-

scribed in Section 4.2. As previously noted, we used
BLEU+1 (Lin and Och, 2004) for g. MegaM was
easy to set up and ran fairly quickly, however any
linear binary classifier that operates on real-valued
features can be used, and in fact we obtained simi-

12and acknowledge the use of David Chiang’s code
13This is a more realistic scenario for would-be implementers

of MIRA, as obtaining the so-called “hope” and “fear” transla-
tions from the lattice or forest is significantly more complicated
than simply obtaining a k-best list. Other tests comparing these
methods have shown between 0.1 to 0.3 BLEU drop using 30-
best hw on Chinese-English (Wang, 2011).

48

Answered?

• Grammar-less model (but very strong)

• Fast decoding

• Why MERT? (Good for non-binary, numerical
features)

49

Structures in SMT

• Tutorial

• Phrase-based MT

• Tree-based MT

• Syntactic Structures in System Combination

Tree-based MT

• Backgrounds

• CFG, parsing, hypergraph, deductive
system semirings

• Tree-based SMT

• Synchronous-CFG

• String-to-Tree, Tree-to-String

51

Backgrounds: CFG

• parsing = intersection of CFG with a string
(regular grammar)

S � NP VP

NP � NNP

NP � NP PP

NP � DP NN

NP � DT NN

VP � VBD NP

NNP � Bush

VBD � held
...

52

Parsing: CKY

• O(n3) : For each length n, for each position i,
for each rule X → Y Z, for each split point k

• (Bottom-up) topological order

2,4 4,6

2,6

2,4 4,6

2,6

2,4 4,6

2,6

i,k k,j

i,j

i,k k,j

i,j

X � Y Z

53

Hypergraph

• Generalization of graphs:

• h(e): head node of hyperedge e

• T(e): tail node(s) of hyperedge e, arity = |T(e)|

• hyperedge = instantiated rule

• Represented as and-or graphs

0,6

0,1

0,1

1,6

1,2 2,6

e = � 1,6� �� �
h(e)

, { 1,2, 2,6}� �� �
T (e)

�

1,6

�

1,2 2,6

(Klein and Manning, 2001)

54

Deductive System

• Parsing algorithm as a deductive system

• We start from initial items (axioms) until we
reach a goal item

• If antecedents are proved, its consequent is proved

• deduction = hyperedge

.
.

..VP1,6

.
.

.
.

.
..VBD1,2 .

..NP2,6

antecedents︷ ︸︸ ︷
VBD1,2 NP2,6

VP1,6︸ ︷︷ ︸
consequent

VP[i,j] → VBZ[j,k] NP[i,k]

(Shieber et al., 1995)

55

Packed Forest

• A polynomial space encoding of exponentially
many parses by sharing common sub-derivations

• Single derivation = tree

(Klein and Manning, 2001; Huang and Chiang, 2005)

VBD1,2
NP2,4 PP4,6

NP2,6

VP1,6

VBD1,2 NP2,4 PP4,6

VP1,6

1,6

1,2 2,6

2,4 4,6

1,6

1,2 2,6

2,4 4,6

56

Summary of Formalisms
hypergraph AND/OR

graph
CFG deductive

system
vertex OR-node symbol item

source-vertex leaf OR-node terminal axiom

target-vertex root OR-node start symbol goal item

hyperedge AND-node production instantiated
deduction

〈v, {u1, u2}〉 v → u1 u2
u1 u2

v
v

�

u1 u2
57

Weights and Semirings

• Associate weights as in WFST

• ⊗ : extension (multiplicative), ⊕ : summary (additive)

58

VP
w1� VBD NP

NP
w2� NP PP

.

.

..NP2,6 : w2 � a � b

.
.

.
.

.
..NP2,4 : a

.
..PP4,6 : b

NP2,4 : a PP4,6 : b

NP2,6 : w2 ⊗ a⊗ b
: w2

.

.

..VP1,6 : w1 � c � d

.
.

.
.

.
..VBD1,2 : c

.
..NP2,6 : d

VBD1,2 : c NP2,6 : d

VP1,6 : w1 ⊗ c⊗ d
: w1

• The weight of a hyperedge is dependent on antecedents
(non-monotonic)

• The weight of a derivation is the product of hyperedge
weights

• The weight of a vertex is the summary of
(sub-)derivation weights

v

u1 u2
u3 u4

e1 e2

d(v) = (w(e1, u1, u2)⇥ d(u1)⇥ d(u2))

� (w(e2, u3, u4)⇥ d(u3)⇥ d(u4))

Weights and Semirings

59

Semirings

60

semiring K ⊕ ⊗ 0 1
Viterbi [0,1] max × 0 1

Real R + x 0 1

Log R logsumexp + +∞ 0

Tropical R min + +∞ 0

Expectation <P,R>
<p1⊕p2,
r1⊕r2>

<p1⊗p2,
p1⊗r2⊕p2⊗r1>

<0,0> <1,0>

K = �K, �, �,0,1�

Conclusion

• Review important concepts from “parsing”

• CFG, parsing, hypergraph, deductive
system, weights, semirings

61

Tree-based MT

• Backgrounds

• CFG, parsing, hypergraph, deductive
system semirings

• Tree-based SMT

• Synchronous-CFG

• String-to-Tree, Tree-to-String

62

Synchronous-CFG

• D: a single derivation constructed by intersecting
SCFG with input string

ê = argmax
e

exp
�
w� · h(e, D, f)

�
�

e�,D� exp (w� · h(e�, D�, f))

= argmax
e

w� · h(e, D, f)

1

2

を⅏

3

4

₝㼨爨

⃍嫛 5

ℕ↩店

1

2 3

5 4

1

2

を⅏

3

4

₝㼨爨

⃍嫛 5

ℕ↩店

1

2 3

5 4

1

2

を⅏

3

4

₝㼨爨

⃍嫛 5

ℕ↩店

1

2 3

5 4

1

2

を⅏

3

4

₝㼨爨

⃍嫛 5

ℕ↩店

1

2 3

5 4

1

2

を⅏

3

4

₝㼨爨

⃍嫛 5

ℕ↩店

1

2 3

5 4

1

2

を⅏

3

4

₝㼨爨

⃍嫛 5

ℕ↩店

1

2 3

5 4

63

(Chiang, 2007)

Synchronous-CFG: Model

• We use two categories, S and X (Chiang, 2007)

• Or, borrow linguistic categories from syntactic parse
(Zollman and Venugopal, 2006)

VP �
�
VBD 1 NP 2 , NP 2 VBD 1

�

NP �
�
NP 1 PP 2 , NP 1 PP 2

�

VP �
�
VBD 1 NP 2 PP 3 , NP 2 PP 3 VBD 1

�

�
�

1 2 , 1 2

�

�
�

1 , 1

�

�
�

1 ⃍嫛 2 , 2 1

�

�
�
₝㼨爨,

�

64

Rule Extraction

• As in phrase-based models, extract phrases then, use
sub-phrases as non-terminals, aka Hiero (Chiang, 2007)

を⅏ ₝ 㼨爨⃍嫛 ℕ ↩店

(Example from Huang and Chiang, 2007)

�
�

1 2 ℕ↩店, 2 1

�

〈
, ⃍嫛

〉

〈 ,
₝㼨爨⃍嫛ℕ↩店

〉

〈
,₝㼨爨

〉

65

Syntactic Categories

• Borrow syntactic categories either from source/
target side, aka SAMT(Zollman and Venugopal, 2006)

を⅏ ₝ 㼨爨⃍嫛 ℕ ↩店

PP

VP
VBD

NP

〈 ,
₝㼨爨⃍嫛ℕ↩店

〉

〈
, ⃍嫛

〉

〈
,₝㼨爨

〉

VP →VBD a talk PP, PP VBD 了 会谈

VBD+NP

66

Exhaustive Extraction

• Exhaustively extract rules as in phrase-based MT

• + glue rules

を⅏ ₝ 㼨爨⃍嫛 ℕ ↩店
1 2 ℕ↩店 2 1

1 2 ↩店 2 1

1 2 ↩店 2 1

1 ⃍嫛 2 2 1

1 ⃍嫛ℕ 2 2 1

₝㼨爨 1 1

₝ 1 2 2 1

�
�

1 2 , 1 2

�

�
�

1 , 1

�

67

Features from Rules

• Collect all the rules (α, β) from the data:

• α = source side string, β = target side string

• Maximum likelihood estimates by relative frequencies

• Employ scores in two directions

log pr(�̄|�̄) = log
count(�̄, �̄)�
�̄� count(�̄, �̄�)

log pr(�̄|�̄) = log
count(�̄, �̄)�
�̄� count(�̄�, �̄)

68

Remarks on Rules
• Too many rules extracted (Chiang, 2007):

• at most two non-terminal symbols

• at least one terminal between non-terminals in
the source side

• Span at most 15 words for “holes”

• Fractional counts (Chiang, 2007):

• Each phrases counted in phrase-based MT

• Fractional counts for rules sharing the same
source/target span

69

Other Features

• Lexical weights as used in phrase-based MT

• ngram language model(s)

• word count: bias for ngram language model(s)

• rule count: shorter or longer phrases

• glue-rule counts: bias for monotonic glue rules

70

Synchronous-CFG: Parsing

• Parse input sentence using the source side, and
construct a translation forest by target side

bushi

yu shalong

juxing

le huitan

X4,6

X1,6

X0,6

X3,4

Bush
with Sharon

talks

X0,1 X1,3

� � 1 2 ,

2 1 �

X3,4 X1,3

hold

X4,6X0,1

X1,6

held
a talk

X0,6

� � 1 2 ,

2 1 �

71

Synchronous-CFG: Parsing

• Translation by SCFG = monolingual parsing
using the source side grammar

• Construct forest by the projected target
side

• From forests, compute the best derivation
(Huang and Chiang, 2005)

• Complexity: O(n3) as in monolingual CKY

72

Non-Local Features

• non-local features which requires out-of-span
context, i.e. bigram LM

X1,6

X1,3X3,4

with Sharon
and Sharon
Sharon with
Sharon and

a talk
talks
meeting
meetings

� � 1 2 ,

2 1 �

held a talk with Sharon
held talks with Sharon
held a talk and Sharon
held meeting Sharon with

p(talk | a) p(Sharon | with)
p(Sharon | and)
p(with | Sharon)
p(and | Sharon)

Update boundary
words only

73

Bigram Features

• We keep only bigram states: (Why 2 words?)

X1,6

X1,3X3,4

with * Sharon
and * Sharon
Sharon * with
Sharon * and

a * talk
talks
meeting
meetings

� � 1 2 ,

2 1 �

held * Sharon
held * Sharon
held * Sharon
held * with

74

Language Model Updates

• Each hypothesis keeps two contexts:

• Prefix: ngrams to be scored with antecedents

• Suffix: contexts for future ngrams (i.e. Phrase-
based MT)

• Complexity: O(n3V2(m-1))

• Very inefficient: we need to explicitly enumerate
all the hypotheses in antecedents

75

Forest Rescoring

• Translation by SCFG = monolingual parsing
using the source side grammar

• Construct forest by the projected target
side

• From forests, compute the best derivation
(Huang and Chiang, 2005)

• Complexity: O(n3) as in monolingual CKY

76

+ Rescore with non-local features

Cube Pruning

• For each hyperedge, create a “cube” representing
combinations of antecedents (Huang and Chiang, 2007)

� � 1 2 ,

2 1 �

2.5 2.7 3.6 4.2

2.8 3.0 3.9 4.5

3.7 3.9 4.8 5.4

4.1 4.3 5.2 5.8

a * talk

talks

meeting

meetings

with * S
haro

n

and * S
haro

n

Sharo
n * w

ith

Sharo
n * a

nd

1.0

1.3

2.2

2.6

1.5 1.7 2.6 3.2

77

Cube Pruning

• Bigrams require contexts from antecedents:
non-monotonic scoring

� � 1 2 ,

2 1 �

2.5 2.7 3.6 4.2

2.8 3.0 3.9 4.5

3.7 3.9 4.8 5.4

4.1 4.3 5.2 5.8

a * talk

talks

meeting

meetings

with * S
haro

n

and * S
haro

n

Sharo
n * w

ith

Sharo
n * a

nd

1.0

1.3

2.2

2.6

1.5 1.7 2.6 3.2

+0.5

+0.3

+0.5

+0.3

+1.0

+1.5

+1.0

+1.5

+1.5

+2.0

+1.5

+2.0

+1.5

+2.0

+1.5

+2.0

78

Cube Pruning

• Starting from the upper-left corner, enumerate
antecedent combinations

3.0a * talk

talks

meeting

meetings

with * S
haro

n

and * S
haro

n

Sharo
n * w

ith

Sharo
n * a

nd

1.0

1.3

2.2

2.6

1.5 1.7 2.6 3.2

queue:
k-best:

(0,0)

79

Cube Pruning

• Starting from the upper-left corner, enumerate
antecedent combinations

3.0a * talk

talks

meeting

meetings

with * S
haro

n

and * S
haro

n

Sharo
n * w

ith

Sharo
n * a

nd

1.0

1.3

2.2

2.6

1.5 1.7 2.6 3.2

queue:
k-best: (0,0)

80

Cube Pruning

• Starting from the upper-left corner, enumerate
antecedent combinations

3.0 3.7

3.1

a * talk

talks

meeting

meetings

with * S
haro

n

and * S
haro

n

Sharo
n * w

ith

Sharo
n * a

nd

1.0

1.3

2.2

2.6

1.5 1.7 2.6 3.2

queue:
k-best: (0,0)

(0,1)(1,0)

81

Cube Pruning

• Starting from the upper-left corner, enumerate
antecedent combinations

3.0 3.7

3.1

a * talk

talks

meeting

meetings

with * S
haro

n

and * S
haro

n

Sharo
n * w

ith

Sharo
n * a

nd

1.0

1.3

2.2

2.6

1.5 1.7 2.6 3.2

queue:
k-best: (0,0)(0,1)

(1,0)

82

Cube Pruning

• Starting from the upper-left corner, enumerate
antecedent combinations

3.0 3.7

3.1 4.5

4.2

a * talk

talks

meeting

meetings

with * S
haro

n

and * S
haro

n

Sharo
n * w

ith

Sharo
n * a

nd

1.0

1.3

2.2

2.6

1.5 1.7 2.6 3.2

queue:
k-best: (0,0)(0,1)

(1,0)(0,2) (1,1)

83

Cube Pruning

• Starting from the upper-left corner, enumerate
antecedent combinations

3.0 3.7

3.1 4.5

4.2

a * talk

talks

meeting

meetings

with * S
haro

n

and * S
haro

n

Sharo
n * w

ith

Sharo
n * a

nd

1.0

1.3

2.2

2.6

1.5 1.7 2.6 3.2

queue:
k-best: (0,0)(0,1) (1,0)

(0,2) (1,1)

84

Cube Pruning

• Starting from the upper-left corner, enumerate
antecedent combinations

3.0 3.7 5.1

3.1 4.5

4.2

a * talk

talks

meeting

meetings

with * S
haro

n

and * S
haro

n

Sharo
n * w

ith

Sharo
n * a

nd

1.0

1.3

2.2

2.6

1.5 1.7 2.6 3.2

queue:
k-best: (0,0)(0,1) (1,0)

(0,2) (1,1)(3,0)

85

Cube Pruning

• Starting from the upper-left corner, enumerate
antecedent combinations

3.0 3.7 5.1

3.1 4.5

4.2

a * talk

talks

meeting

meetings

with * S
haro

n

and * S
haro

n

Sharo
n * w

ith

Sharo
n * a

nd

1.0

1.3

2.2

2.6

1.5 1.7 2.6 3.2

queue:
k-best: (0,0)(0,1) (1,0) (0,2)

(1,1)(3,0)

86

Cube Pruning

• Starting from the upper-left corner, enumerate
antecedent combinations

3.0 3.7 5.1

3.1 4.5

4.2 4.9

4.4

a * talk

talks

meeting

meetings

with * S
haro

n

and * S
haro

n

Sharo
n * w

ith

Sharo
n * a

nd

1.0

1.3

2.2

2.6

1.5 1.7 2.6 3.2

queue:
k-best: (0,0)(0,1) (1,0) (0,2)

(1,1) (3,0)(0,4) (1,2)

87

Multiple Rules

• Multiple rules sharing the same span are queued

• Each rule is associated with a cube

• hypothesis = hyperedge + cube-position

X4,6 X1,3
X3,4

X1,6

a talk
held

88

Further Faster Pruning
• Cube Growing (Huang and Chiang, 2007)

• Top-down pruning combined with heuristic
estimates

• Faster Cube Pruning (Gesmundo and Henderson,
2010)

• Eliminate bookkeeping for inserted hypotheses by
determining the ordering of cube enumerations

• Push minimum hypotheses by looking up ancestors

• Incremental (Huang and Mi, 2010)

• Top-down decoding as in (Watanabe et al., 2006)

Conclusion

• Synchronous-CFG

• paired CFG + shared non-terminal symbols

• Training is based on phrase-based MT by
treating sub-phrase as a non-terminal

• Decoding: monolingual parsing

• An efficient antecedent combination via
cube-pruning

90

Tree-based MT

• Backgrounds

• CFG, parsing, hypergraph, deductive
system semirings

• Tree-based SMT

• Synchronous-CFG

• String-to-Tree, Tree-to-String

91

{Tree,String}-to-{Tree,String}

x1

x2 x3

x5

x6

x4

x7

x1

x2 x3

x5

x6

x4

x7

x1

x2 x3

x5

x6

x4

x7

x1

x2 x3

x5

x6

x4

x7

x1

x2 x3

x5

x6

x4

x7

x1

x2 x3

x5

x6

x4

x7

• Each synchronous rule has a subtree structure

• Flat structure + sharing the same non-terminal
symbols = synchronous-CFG

x1

x2 x3

x5

x6

x4

x7

92

(Galley et al., 2004)

Tree-to-String Rules

x1

� x1�

x1

� x1

x1

� x1

x1

x2 x3

� x1 x3 x2

x1

x2

� x2 x193

ルールの抽出

• Compute “minimum rules” as in phrase-based
MT

(Galley et al., 2004)

94

Rule Extraction

• Compute “spans” by propagating alignment in
bottom-up

(0)

(4) (5) (1) (1) (3)

(4,5) (1,3)

(1,3,4,5)

(0,1,3,4,5)

(Galley et al., 2004)

95

Rule Extraction

• Compute “complements” in top-down

(0)

(4) (5) (1) (1) (3)

(4,5) (1,3)

(1,3,4,5)

(0,1,3,4,5)()

(1,3,4,5) (0)

(0,4,5)(0,1,3)

(0,1,3,4)
(0,1,3,5) (0,1,4,5)

(0,1,3,4,5)(0,1,3,4,5)

96

Rule Extraction

• Compute “frontiers”: The nodes in which the
intersection of “spans” and “complements” is empty

(0)

(4) (5) (1) (1) (3)

(4,5) (1,3)

(1,3,4,5)

(0,1,3,4,5)()

(1,3,4,5) (0)

(0,4,5)(0,1,3)

(0,1,3,4)
(0,1,3,5) (0,1,4,5)

(0,1,3,4,5)(0,1,3,4,5)

97

Rule Extraction

• Extract minimum rules using frontiers

x1 x1

� x2 x1

98

Rule Extraction

• Extract minimum rules using frontiers

�

99

Rule Extraction

• Extract minimum rules using frontiers

x1

� x1

100

Rule Extraction

• Extract “compound rules” by combining
minimum rules (i.e. longer phrases)

(Galley et al., 2006)

x1

x2

� x2 x1

101

Decoding: String-{String,Tree}

• Similar to SCFG decoding: Use the “collapsed”
source side rule to perform CKY parsing

• Construct a translation forest using the target side

x1

� x1

x1

x2

� x2 x1

〈 → 1,
x → x1〉

〈 → 1 2,
x → x2 x1〉

102

(Galley et al., 2004)

Decoding: Tree-{String,Tree}

• First, an input sentence is parsed

• Input tree is transformed into a translation forest by
tree rewriting

x1

x2 x3

x5

x6

x4

x7

x1

x2 x3

x5

x6

x4

x7

x1

x2 x3

x5

x6

x4

x7

x1

x2 x3

x5

x6

x4

x7

x1

x2 x3

x5

x6

x4

x7

x1

x2 x3

x5

x6

x4

x7

x1

x2 x3

x5

x6

x4

x7

x1

x2 x3

x5

x6

x4

x7

103

(Huang et al., 2006)

Forest Rescoring
• Translation by {tree,string}-to-{tree,string}

• string-to-{tree,sting}: parsing using the
source-side grammar

• tree-to-{tree,string}: parse input
sentences + tree-match-rewrite

• Construct forest by the projected target
side

• From forests, compute the best derivation
(Huang and Chiang, 2005)

104

Conclusion

• {String,Tree}-to-{String,Tree} translation models

• Rules extraction by GHKM (Galley et al., 2004)

• Galley M, Hopkins M, Knight K, Marcu D, 2004

• Decoding:

• String-to-{String, Tree} by CKY

• Tree-to-{String,Tree} by tree-rewrite

105

More on Tree-based Models
• Forest-based approach: instead of 1-best parse, use

forest encoding k-bests (Mi and Huang, 2008; Mi et
al., 2008)

• “Binarized forest” as an alternative to represent
multiple parses (Zhang et al., 2011)

• Fuzzy tree-to-tree as a way to overcome
“stricktness” of tree-based models (Chiang, 2010)

• Use of dependency (Mi and Liu, 2010; Xie et al., 2011)

106

Tree-based MT

• Backgrounds

• CFG, parsing, hypergraph, deductive
system semirings

• Tree-based SMT

• Synchronous-CFG

• String-to-Tree, Tree-to-String

107

Structures in SMT

• Tutorial

• Phrase-based MT

• Tree-based MT

• Syntactic Structures in System Combination

MT System Combination by
Confusion Forest

Taro Watanabe and Eiichiro Sumita
@ NICT

MT System Combination
• Better translation by combining multiple system

outputs:

• Sentence selection(Nomoto, 2004; etc.)

• Phrasal combination (Frederking and Nirenburg,
1994; etc.)

• Word level combination (Bangalore et al., 2001;
Matusov et al., 2006; etc.)

• This Work: Syntactic combination, not word-wise
combination

.

.

..I ..saw ..the ..forest . ..

..I ..walked ..the ..blue ..forest ..

..I ..saw ..the ..green ..trees ..

..the ..forest ..was ..found . ..

Confusion Network

• State-of-the-art: Confusion Network

• Choose a skeleton, compute word alignment against the
skeleton

• Edit-distance-based alignment (TER etc.) (Sim et al., 2007)

• Model-based alignment(GIZA++ etc.) (Matsov et al.,
2006)

.

.

..I ..saw ..the . ..forest . .

..I ..walked ..the ..blue ..forest . .

..I ..saw ..the . ..green ..trees .

.. . ..the . ..forest ..was ..found

★

Confusion Network

• Construct a network with each arc representing alternative
translation

• Best path = Best translation

• Syntactically different language pairs: i.e. active/passive voices

• Spurious insertion/repetition due to alignment error

• Incremental alignment/construction + merge multiple
networks into one (Rosti et al., 2008)

..

.I

.�

.saw

.�

.walked

.the
.blue

.�

.forest

.green

.trees

.�
.was

.found

.�

Confusion Forest

.

.

..PRP

.I .

..NP@1

.

.

.

.

.

..DT

.the .

..NN

.forest

.

..VBD@3

.was

.

..VP@4

.

.

.

..VBN

.found
.

..VBD@2.1

.walked . ..saw . ..NP@2.2

.

..DT

.the .

..JJ

.blue . ..green

.

..NN

.forest . ..trees

.

..DT@2.2.1

.the .

..NN@2.2.2

.forest

. ..VP@2

. ..S@�

• Compactly represent multiple
parses by sharing nodes

• Represented by “hypergraph”

e2
e1

e1 = � 2,
�

3, 4
⇥
⇥

e2 = � 2,
�

2.1, 2.2
⇥
⇥

Rule Extraction

• Parse each system output by a parser

• Extract rules from parsed trees: local grammar

.

.

..S

.

.

.

.

.

..NP

.

.

.

..PRP

.I

.

..VP

.

.

.

.

.

..VBD

.saw

.

..NP

.

.

.

.

.

..DT

.the .

..NN

.forest

.

.

..S ..� ..NP ..VP

..NP ..� ..PRP

..PRP ..� ..I

..VP ..� ..VBD ..NP

..VBD ..� ..saw

..NP ..� ..DT ..NN

..DT ..� ..the

..NN ..� ..forest

.

.

..S ..� ..NP ..VP

..NP ..� ..PRP

..PRP ..� ..I

..VP ..� ..VBD ..NP

..VBD ..� ..saw

..NP ..� ..DT ..NN

..DT ..� ..the

..NN ..� ..forest

.

.

..S ..� ..NP ..VP

..NP ..� ..PRP

..PRP ..� ..I

..VP ..� ..VBD ..NP

..VBD ..� ..saw

..NP ..� ..DT ..NN

..DT ..� ..the

..NN ..� ..forest

.

.

..S ..� ..NP ..VP

..NP ..� ..PRP

..PRP ..� ..I

..VP ..� ..VBD ..NP

..VBD ..� ..saw

..NP ..� ..DT ..NN

..DT ..� ..the

..NN ..� ..forest

.

.

..S ..� ..NP ..VP

..NP ..� ..PRP

..PRP ..� ..I

..VP ..� ..VBD ..NP

..VBD ..� ..saw

..NP ..� ..DT ..NN

..DT ..� ..the

..NN ..� ..forest

.

.

..S ..� ..NP ..VP

..NP ..� ..PRP

..PRP ..� ..I

..VP ..� ..VBD ..NP

..VBD ..� ..saw

..NP ..� ..DT ..NN

..DT ..� ..the

..NN ..� ..forest

.

.

..S ..� ..NP ..VP

..NP ..� ..PRP

..PRP ..� ..I

..VP ..� ..VBD ..NP

..VBD ..� ..saw

..NP ..� ..DT ..NN

..DT ..� ..the

..NN ..� ..forest

.

.

..S ..� ..NP ..VP

..NP ..� ..PRP

..PRP ..� ..I

..VP ..� ..VBD ..NP

..VBD ..� ..saw

..NP ..� ..DT ..NN

..DT ..� ..the

..NN ..� ..forest

.

.

..S

.

.

.

.

.

..NP

.

.

.

.

.

..DT

.the .

..NN

.forest

.

..VP

.

.

.

.

.

..VBD

.was

.

..VP

.

.

.

..VBN

.found

.

.

..VP ..� ..VBD ..VP

..VBD ..� ..was

..VP ..� ..VBN

..VBN ..� ..found

.

.

..VP ..� ..VBD ..VP

..VBD ..� ..was

..VP ..� ..VBN

..VBN ..� ..found

.

.

..VP ..� ..VBD ..VP

..VBD ..� ..was

..VP ..� ..VBN

..VBN ..� ..found

.

.

..VP ..� ..VBD ..VP

..VBD ..� ..was

..VP ..� ..VBN

..VBN ..� ..found

Generation by Earley

• Generation from the extracted grammar

• Scanning always succeed: constraint by height

Scan:
[X ⇥ � • x⇥, h] : u
[X ⇥ �x • ⇥, h] : u

Predict:
[X ⇥ � •Y⇥, h]

[Y ⇥ •⇤, h+ 1] : u
Y

u⇥ ⇤ ⇤ G, h < H

Complete:
[X ⇥ � •Y⇥, h] : u [Y ⇥ ⇤•, h+ 1] : v

[X ⇥ �Y • ⇥, h] : u� v

Generation by Earley

.

.

..PRP

.I .

..NP@1

.

.

.

.

.

..DT

.the .

..NN

.forest

.

..VBD@3

.was

.

..VP@4

.

.

.

..VBN

.found
.

..VBD@2.1

.walked . ..saw . ..NP@2.2

.

..DT

.the .

..JJ

.blue . ..green

.

..NN

.forest . ..trees

.

..DT@2.2.1

.the .

..NN@2.2.2

.forest

. ..VP@2

. ..S@�

.

.

..PRP

.I .

..NP@1

.

.

.

.

.

..DT

.the .

..NN

.forest

.

..VBD@3

.was

.

..VP@4

.

.

.

..VBN

.found
.

..VBD@2.1

.walked . ..saw . ..NP@2.2

.

..DT

.the .

..JJ

.blue . ..green

.

..NN

.forest . ..trees

.

..DT@2.2.1

.the .

..NN@2.2.2

.forest

. ..VP@2

. ..S@�

.

.

..PRP

.I .

..NP@1

.

.

.

.

.

..DT

.the .

..NN

.forest

.

..VBD@3

.was

.

..VP@4

.

.

.

..VBN

.found
.

..VBD@2.1

.walked . ..saw . ..NP@2.2

.

..DT

.the .

..JJ

.blue . ..green

.

..NN

.forest . ..trees

.

..DT@2.2.1

.the .

..NN@2.2.2

.forest

. ..VP@2

. ..S@�

.

.

..PRP

.I .

..NP@1

.

.

.

.

.

..DT

.the .

..NN

.forest

.

..VBD@3

.was

.

..VP@4

.

.

.

..VBN

.found
.

..VBD@2.1

.walked . ..saw . ..NP@2.2

.

..DT

.the .

..JJ

.blue . ..green

.

..NN

.forest . ..trees

.

..DT@2.2.1

.the .

..NN@2.2.2

.forest

. ..VP@2

. ..S@�

.

.

..PRP

.I .

..NP@1

.

.

.

.

.

..DT

.the .

..NN

.forest

.

..VBD@3

.was

.

..VP@4

.

.

.

..VBN

.found
.

..VBD@2.1

.walked . ..saw . ..NP@2.2

.

..DT

.the .

..JJ

.blue . ..green

.

..NN

.forest . ..trees

.

..DT@2.2.1

.the .

..NN@2.2.2

.forest

. ..VP@2

. ..S@�

.

.

..PRP

.I .

..NP@1

.

.

.

.

.

..DT

.the .

..NN

.forest

.

..VBD@3

.was

.

..VP@4

.

.

.

..VBN

.found
.

..VBD@2.1

.walked . ..saw . ..NP@2.2

.

..DT

.the .

..JJ

.blue . ..green

.

..NN

.forest . ..trees

.

..DT@2.2.1

.the .

..NN@2.2.2

.forest

. ..VP@2

. ..S@�

.

.

..PRP

.I .

..NP@1

.

.

.

.

.

..DT

.the .

..NN

.forest

.

..VBD@3

.was

.

..VP@4

.

.

.

..VBN

.found
.

..VBD@2.1

.walked . ..saw . ..NP@2.2

.

..DT

.the .

..JJ

.blue . ..green

.

..NN

.forest . ..trees

.

..DT@2.2.1

.the .

..NN@2.2.2

.forest

. ..VP@2

. ..S@�

.

.

..PRP

.I .

..NP@1

.

.

.

.

.

..DT

.the .

..NN

.forest

.

..VBD@3

.was

.

..VP@4

.

.

.

..VBN

.found
.

..VBD@2.1

.walked . ..saw . ..NP@2.2

.

..DT

.the .

..JJ

.blue . ..green

.

..NN

.forest . ..trees

.

..DT@2.2.1

.the .

..NN@2.2.2

.forest

. ..VP@2

. ..S@�

.

.

..PRP

.I .

..NP@1

.

.

.

.

.

..DT

.the .

..NN

.forest

.

..VBD@3

.was

.

..VP@4

.

.

.

..VBN

.found
.

..VBD@2.1

.walked . ..saw . ..NP@2.2

.

..DT

.the .

..JJ

.blue . ..green

.

..NN

.forest . ..trees

.

..DT@2.2.1

.the .

..NN@2.2.2

.forest

. ..VP@2

. ..S@�

.

.

..S

.

.

.

.

.

..NP

.

.

.

..PRP

.I

.

..VP

.

.

.

.

.

..VBD

.saw

.

..NP

.

.

.

.

.

..DT

.the .

..NN

.forest

Spurious Ambiguity

• Memorize the (partial) tree structures in each node

• Employ the sequence of Ealrye state as a node

• Horizontal/Vertical Markovization (Klein and Manning, 2003)

•S
•S
+ •NP : VP
•S
+ •NP : VP
+ • PRP

.

.

..S

.

.

.

.

.

..NP

.

.

.

..PRP

.I

.

..VP

.

.

.

.

.

..VBD

.saw

.

..NP

.

.

.

.

.

..DT

.the .

..NN

.forest

.

.

..S

.

.

.

.

.

..NP

.

.

.

..PRP

.I

.

..VP

.

.

.

.

.

..VBD

.saw

.

..NP

.

.

.

.

.

..DT

.the .

..NN

.forest

.

.

..S

.

.

.

.

.

..NP

.

.

.

..PRP

.I

.

..VP

.

.

.

.

.

..VBD

.saw

.

..NP

.

.

.

.

.

..DT

.the .

..NN

.forest

.

.

..S

.

.

.

.

.

..NP

.

.

.

..PRP

.I

.

..VP

.

.

.

.

.

..VBD

.saw

.

..NP

.

.

.

.

.

..DT

.the .

..NN

.forest

.

.

..S

.

.

.

.

.

..NP

.

.

.

..PRP

.I

.

..VP

.

.

.

.

.

..VBD

.saw

.

..NP

.

.

.

.

.

..DT

.the .

..NN

.forest

.

.

..S

.

.

.

.

.

..NP

.

.

.

..PRP

.I

.

..VP

.

.

.

.

.

..VBD

.saw

.

..NP

.

.

.

.

.

..DT

.the .

..NN

.forest

.

.

..S

.

.

.

.

.

..NP

.

.

.

..PRP

.I

.

..VP

.

.

.

.

.

..VBD

.saw

.

..NP

.

.

.

.

.

..DT

.the .

..NN

.forest

.

.

..S

.

.

.

.

.

..NP

.

.

.

..PRP

.I

.

..VP

.

.

.

.

.

..VBD

.saw

.

..NP

.

.

.

.

.

..DT

.the .

..NN

.forest

•S
+NP : •VP•S

+NP : •VP
+ •VBD : NP

•S
+NP : •VP
+VBD : •NP•S

+NP : •VP
+VBD : •NP
+ •DT : NN

•S
+NP : •VP
+VBD : •NP
+DT : •NN

Forest Reranking

• Choose the best derivation d among all possible
derivations D in a forest F

• Terminal yield of the best derivation = the best
translation

• Approximately apply non-local features (ngram language
models) by Cube Pruning (Huang and Chiang, 2007)

• Efficient k-best by Algorithm 3 (Huang and Chiang, 2005)

d̂ = argmax
d∈D

w" · h(d, F)

Experiments
• WMT10 System Combination Task

• Czech, German, Spanish, French→ English

• tune/test: 455/2,034 sentences

cz-en de-en es-en fr-en

systems

tune

test

6 16 8 14

10.6K 10.9K 10.9K 11.0K

50.5K 52.1K 52.1K 52.4K

Systems
• CF: Stanford parser + “cicada” (a hypergraph-based

toolkit based on SEMIring parsing framework)

• CN: Single network by merging multiple networks +
conversion into hypergraph by lattice parsing

• features: tuned by hypergraph-MERT(Kumar et al. 2009)

• Language Models, # of terminals, # of hyperedges

• # of rules in a derivation originally in nth system output

• BLEUs by treating each system output as a reference
translation

• Network distance (only used for CN)

BLEU
cz-en de-en es-en fr-en

system min

max

CN

CF,v=∞,h=∞

CF,v=∞,h=2

CF,v=∞,h=1

14.09 15.62 21.79 16.79

23.44 24.10 29.97 29.17

23.70 24.09 30.45 29.15

24.13 24.18 30.41 29.57

24.14 24.58 30.52 28.84

24.01 23.91 30.46 29.32

Oracle BLEU
cz-en de-en es-en fr-en

rerank

CN

CF,v=∞,h=∞

CF,v=∞,h=2

CF,v=∞,h=1

29.40 32.32 36.83 36.59

38.52 34.97 47.65 46.37

30.51 34.07 38.69 38.94

30.61 34.25 38.87 39.10

31.09 34.65 39.27 39.51

Hypergraph size

• Average # of hyperedges

• (rough) estimates for speed

cz-en de-en es-en fr-en

CN

CF,v=∞,h=1

CF,v=5,h=1

CF,v=4,h=1

2,222.68 47,231.20 2,932.24 11,969.40

230.08 540.03 262.30 386.79

254.45 651.10 302.01 477.51

286.01 802.79 349.21 575.17

Conclusion
• System combination by Confusion Forest which

employs syntactic distance, not word-level
distance

• Forest construction by the grammar extracted
from system outputs

• Parser: assign tree structure to the similar
expressions

• Compact date structure + comparable
performance against Confusion Network

Structures in SMT

• Tutorial

• Phrase-based MT

• Tree-based MT

• Syntactic Structures in System Combination

Research on MT

• Reading: at least 50 papers are related to MT
“every year”

• Specialist: solve a sub-problem

• Language Neutral: a solution which works only
for a particular language pair is boring

