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Machine Translation
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The United Inspection Department
of Heishantou Port has shortened
the procedures for leaving and
entering the territory from originally
2 - 3 days to | day.

® We learn parameters from data assuming a

“model”

® Decode by the learned parameters



Channel Model

X > Process >Y




encoder
f = source
e = target
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® Employed in: ASR, OCR, MT...




Translation Model

é = argmax |Pr(fle)|Pr(e) ]

e

Translation Model Language Model
(Brown et al., 1990)

® Translation Model: adequacy of translation

® | anguage Model: grammatical correctness, consistent
style, fluency



Language Model

Pr(Idonotknow) = 7
Pr(Inotdo know) = 7

® |ikelihood of a string of English words
® Usually modeled by ngrams

W:w17w27w37”°wl\f

P(W) — p(w17w27w37"'7wN)
p(wl)p(wﬂwl)p(w?,\wl, w2) e
p(wN‘wl,QUQ,UJg,"’ 7wN—1)
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ngram Language Model

® Markov assumption: only n-word history is
memorized

® Bigram:
p(Idonotknow) = p(I)p(do|l)p(not|do)p(know|not)

® Training: Maximum likelihood estimate +
smoothing (Good-Turing, Witten-Bell,
Kneser-Ney etc.)



Word-based MT

I\do \\not\\van to work
Je mne veux pas travailler

(Brown et al., 1993)




Phrase-based MT

I{do not want to work

\

Je || ne veux pas || travailler

(Koehn et al.,2003)



Hierarchical PBMT

%\\

no Want to Work

veux pas travaﬂler

(Chiang, 2007)
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Syntax-based MT
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I do not want to  work

\ W / (Galley et al., 2004)

Je mne veux pas travailler




Structures in SMT

® TJutorial

® Phrase-based MT



Why Phrases!

® Use phrases as a unit of translations

® Directly handle many-to-many word
correspondence + local reordering

® Allow local context + non-compositional phrases

® Employed in many systems, including Google,
NICT (VoiceTra, TexTra) and open-source, Moses
(http://www.statmt.org/moses/)
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Phrase-based Model

show me || the one ] |in the window

T

oevk— 0|2 % |BE TFIu

® (Generative story:
® fis segmented into phrases
® Fach phrase is translated

® Translated phrases are reordered



Phrase-based Model

o CXp (WT ' h(ev ¢7 f))
e = argle:ﬂax Ze’,g/)’ exp (WT .h(e, ¢, 1))

= argmaxw ' -h(e, ¢,f)

® Maximization of a log-linear combination of
multiple feature functions h(e, P, f)

® O:phrasal partition of f and e

® w: weight of feature functions
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Questions

A

é = argmaxw ' - h(e, ¢,f)

® Training: How to learn phrases and
parameters (® and h)?
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Training

® | earn phrase pairs from D = (F,¢&)

® A standard heuristic approach
(Koehn et al.,2003)

® Compute word alighment

® Extract phrase pairs

® Score phrases

17



Word alighment

\ ®. S Lo
\O\f;x\ ﬂ\Z\Q@«\O‘;\\)ﬁL\O \@\\\)}&,‘b«

Bush .
held B

a

talk B

with

Sharon

(Example from Huang and Chiang, 2007)
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Extract Phrase Pairs

(30\ o 8 \O‘;\% N \\0,&2&
Bush .
held
a
talk B
with
Sharon

® From word alighment, extract a phrase pair

consistent with word alighment
19



Bush |ﬁ

held

a

talk i
with . } }

Sharon .

® Exhaustively extract phrases from f, e
20



Features from Phrases

_ COUﬂt(év f)
1 f p— 1 qJ
ng¢( |e) 08 Zf_’ C()U.ﬂt(éa f/)
o count(e, f

> count(e’, f)

® Collect all the phrase pairs from the data

® Maximum likelihood estimates by relative
frequencies

® Employ scores in two directions

21



Features from Alignment
e

1
el rgyean 2 ol

V(i,7)€a

log Plex (ﬂéa 5-)

£

log prex(€|f,a) = log H\{z\ Ea}\ Z t(file:)

V(j,2)€Ea

® | exical weighing which scores by word translation
probabilities

® |dea: counts for rare phrase pairs are unreliable

® Smoothing effect by decomposing into word pairs



> T \O‘;\Vi&%\ev""@o
Bush +2 |
held
a iE
talk
with -3
Sharon

® Distance-based distortion modeling
d(f,p,e) = | +2[+ [0 +[ =5 =7
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Bush /%:j\
held S~
g Am)
\_J\
with
Sharon

® Fine grained reordering features: logp,(o € {m, s, d} |f, &)

® Either monotone, swap, discontinuous



Other Features

® |og of ngram language model(s)
® word count: bias for ngram language model(s)

® phrase count: shorter or longer phrases
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Direct Iraining

® |nstead of word alignment + extraction pipeline,
directly learn phrase-pairs (Marcu and VWong, 2002)

® Bayesian approach + blocked Gibbs sampling to learn
parameters (Blunsom et al,, 2009)

® Exhaustively memorize longer phrases (Neubig et
al.,, 201 1)
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Questions

é = argmaxw ' - h(e, ¢,f)

® Decoding (or search): How to find the best
translation (argmax)?

27



Decoding

N CXp (WT ' h(ev ¢7 f))

argmax

e Ze,7¢, exp (wT -h(e, ¢, f))

= argmaxw ' -h(e,o,f)

® Given an input sentence f and phrasal model h and w,
seek e with the highest score

®
|

® Potential errors:

® Search error: we cannot find the best scored
hypothesis

® Translation error: highest scored hypothesis is bad
28



Enumerate Phrase Pairs

Bush and held a talk
with Sharon talked
with held meeting
Bush| |and|| Sharon | | hold talks

bushi yu shalong juxing le huitan

® Given a input sentence f, we can enumerate all
possible phrases that match with the source side

® Choose the best phrase pair + ordering
29



Phrase-based Search Space

[ Y Y- ]—{ --000- j—»[--”“ J\BAush

Sharory‘ held talks

ceves)

Sharon

Bk \ held a talk

e o emees

bushi yu shalong juxing le huitan

coves

® Node: bit-vector representing covered source words

® Edge: phrasal translations, strictly left-to-right
® Search space: O(2"),Time: O(2"n?) (Why?)
30



Traveling Salesman Problem

® NP-hard problem: visit each city only once
® MT as a Traveling Salesman Problem (Knight, | 999)
® Each source word corresponds to a city
® A Dynamic Programming solution:
® State: visited cities (bit-vector)
® Search space: O(2")

® Distortion limit to reduce search space

i.e. long distortion:[ | Je— ] {  Jo— ]
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Non-local features

p(held|Sharon)

Sh . ) ._e00.:
p(Sgaron] <))] —-a---Sharon [ i e ee-held.

, (held|Bush) o--00- he|C|
...... <g> W
Bush™| e :Bush |

p(Bush|(s)) g m i Lemeeetalk]

held|Bush)p(alheld)p(talk|a
® Features that reqm(res s‘corl%g(clut 0)1}? |(3 ra‘s)es bigram

language model

® Additional state representation required for “future
scoring”’: |-word for bigram LM

® Space: O(2"V™ ), Time: C?Z(Z”Vm"nz) for m-gram LM



Phrase-based Decoding
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® Re-organize the search space by the cardinality (= #
of covered source words)

® Expand hypotheses from the smallest cardinality first
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Pruning
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® Prune hypotheses in a bin sharing the same

cardinality

® Expand survived hypotheses only
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Questions

A

é = argmaxw ' - h(e, ¢,f)

® Tuning (or optimization): How to learn the
scaling of features (w)!?
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Tuning

A CXP (WT ' h(ev ¢7 f))

€ = argmax

o Ze,7¢, exp (wT -h(e, ¢, f))

= argmaxw ' -h(e, ¢,f)

® Three popular objectives (in SMT) for tuning w

® (Direct) Error Minimization (Och, 2003)
® Maximum Entropy (Och and Ney, 2002)

® |arge Margin (VWatanabe et al,, 2007; Chiang
et al., 2008; Hopkins and May, 201 |)
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(Direct) Minimum Error

S
W = argmin Z [(argmaxw ' -h(e,f,), e,)

s=1

® MERT (Minimum ERror Training)

® Standard in SMT (but not in other NLP areas, such
as tagging etc.)

® We can incorporate arbitrary error functions, |

® “Summation” can be replaced by document-wise
BLEU specific summation

® |O+ real valued features
37



n-best Approximation

1: procedure MERT({ (es, fS)}le)

2 forn=1...N do

3 Decode and generate nbest list using w
4: Merge nbest list

5: for k =1...K do

6 for each parameter m = 1...M do
7 Solve one dimensional optimization
8 end for

9: update w

10: end for

11: end for

12: end procedure

® N iterations, with each iteration, n-bests are
generated and merged

® K iterations, with each iteration, M dimensions are
tried (M = # of features), and w is updated
38



Efficient Line Search

é = argmaxw, -h,,(e f)+w,_ -h, (e f)

slope constant
CD
o
(Vg
>
A Wm
L
O
-
L
)

® |f we choose one dimension m, and others fnxed
we can treat each hypothesis e as a “line”

® Compute convex hull of a set of “lines”
39



error count
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(Och, 2003)



MERT in Practice

Many random starting points (Macherey et al., 2008;
Moore and Quirk, 2008)

Many random directions (Macherey et al., 2008)
Error count smoothing (Cer et al., 2008)
Regularization (Hayashi et al., 2009)

Multi-dimensional search by efficiently computing
convex hull (Galley and Quirk, 201 1)

MERT at least 3 times, and report average BLEU
(Clark et al,, 201 1)
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Maximum Entropy
. Zexp " h(e* )

. A 5 e* CORACLE(F,)
W = argmin S lwl — > log

—1 Zexp( T-h(e,fs))

e’ €GEN(f;)

® Minimize the negative log-likelihood of generating
good translations (Och and Ney, 2002)

® ORACLE is a subset of GEN, a set of hypotheses
with minimum loss

® Optimized by L-BFGS or SGD

® Potentially large # of features as in NLP tasks
42



Why Not MaxEnt!?

error criterion used in training | mWER [%] | mPER [%] | BLEU [%] NIST | # words
confidence intervals +/- 2.7 +/- 1.9 +/- 0.8 +/- 0.12 -

MMI 68.0 51.0 11.3 5.76 21933

mWER 68.3 50.2 13.5 6.28 22914
smoothed-mWER 68.2 50.2 13.2 6.27 22902
mPER 70.2 49.8 15.2 6.71 24399
smoothed-mPER 70.0 49.7 15.2 6.69 24198
BLEU 76.1 53.2 17.2 6.66 28002

NIST 73.3 51.5 16 4 6.80 26602

® |n Och and Ney (2002), they used

® VWER to select oracle translations

® n-best merging approach to approximate

summation as in MERT
43




Large Margin
= a]fgmm—HWH2 + LLLfse el

s=1 e}

WT.h(e;fS)_WT'h(esva) Zl( Cs; 3) gse €,
e* ¢ ORACLE(f,)
e, € GEN(f,)

® Structured output learning approach

® Very hard to enumerate all possible €’ and oracle
translations e*

® Solution: online learning or n-best approximation

44



Online Learning

Require: {(fs,e;s)},_,
1. wl = {O}
2: t =1
3: for 1...N do
4: s ~ random(1, S)
& € GEN(f,, w'™1)
if /(é,e;) > 0 then
witl = wt + h(esa fs) - h(é7 fS)
t=1t+1
9: end if
10: end for
11: return w' or + Zi\;l w/

® Averaged perceptron (Liang et al., 2006)

® Scale to large data, but each iteration requires
decoding + weight update
45



Online Large Margin

A
W = argmin §HW/ — w||* + max (Is — w'' - Ahy)

/

é;, = argmaxw ' -h(e,f,)

s = l(es)—1(e])
Ah, = h(e; f;) —h(e",f;)

® line /7 is replaced by the solution of the above
equation

® Still, requires decoding + update in each iteration

® Hard to determine when to stop (watch another
dev data)

46



Ranking Approach
—argmm—\|wu2+LLzsse~e

s=1 e’/
— log (1 + exp(—w r Aheg,es)) Z fs,eg,es
e, e. € GEN(f,)

S)? S

(e ,e]) >0
Ahe// el = h(e” f ) h(e;, fs)
® An n-best approximation approach (Hopkins and

May, 201 1)

® Pair-wise comparison of all the hypotheses

® |ogistic-loss (or O-1 loss): use an off-the-shelf binary

classifier -



Results

26

4-ref BLEU

0 5 10 15 20 25 30
Iteration

® Reranking is competitive to MERT and MIRA,

and scales to large # of features
48



Answered!

® Grammar-less model (but very strong)
® Fast decoding

® Why MERT? (Good for non-binary, numerical
features)

49



Structures in SMT

® [ree-based MT



Tree-based MT

® Backgrounds

® CFG, parsing, hypergraph, deductive
system semirings

51



Backgrounds: CFG

NP VP

- S
NP — NNP _—
NP — NP PP NP VP
/\
NP — DPNN  NNP VBD NP
NP — DT NN o = 3
Bush held NP PP
VP — VBD NP A~
NNP — Bush DT NN IN- NP
o |
VBD —  held a talk with NNP

|
Sharon

® parsing = intersection of CFG with a string

(regular grammar)
52



Parsing: CKY

Bush held a talk with Sharon

® O(n?d) : For each length n, for each position i,
for each rule X =Y Z, for each split point k

® (Bottom-up) topolo5g3ical order



Rypergraph

SO,6
fW\
NPO,1 VP1,6 c = <VP1,67{VBD1,27NP2,6}>
—— N ——
T A h(e) T(e)
NNPO,l VBDLQ NP2)6 VP1,6

T T
Bush  held
(Klein and Manning, 2001)

® Generalization of graphs: VBD; » NP, 4
® h(e): head node of hyperedge e
® T(e):tail node(s) of hyperedge e, arity = [T(e)]
® hyperedge = instantiated rule

® Represented as and-or ggfphs



Deductive System

antecedents
VBDLQ NP2,6 W
\ J L2 T 20yp o — VBZ . NP,
y VP]_76 [Za.]] []7k] [Zak]
VPL@ N——"
consequent (Shieber et al., 1995)

® Parsing algorithm as a deductive system

® We start from initial items (axioms) until we
reach a goal item

® |f antecedents are proved, its consequent is proved

® deduction = hyperedge55



Packed Forest

NP2 4 PP4g
f—Z-i,:(jT;\-. VB2 NPss
| \I VP1,6
VBDLQ :NPQ’G:
M/i VBD; 2 NP3 4 PPy
VPl,G

NP4 PPy4g

(Klein and Manning, 2001; Huang and Chiang, 2005)

® A polynomial space encoding of exponentially
many parses by sharing common sub-derivations

® Single derivation = tree
56



Summary of Formalisms

hypergraph AI;E:;SR CFG dijicztge
vertex OR-node symbol item
source-vertex | leaf OR-node terminal axiom

target-vertex |root OR-node| start symbol goal item

instantiated

hyperedge AND-node production deduction
(v, {ur, uz}) @ U= U1 U2 2
v
A

@ 57




Weights and Semirings

VP 2 VBD NP

NP =3 NP PP

VP1)6 . W1 ®C®d
VBDLQ . C NP2,6 . d

AR
r h VP1’62UJ1®C®CZ
VBDLQ . C NPQ,G . d
NP2’6 : UJ2®CL®[)
A NP2 A4 - . a PP4 6 - b

( A NP26 w2®a®b
NP274 . a PP4’6 . b

. W1

® Associate weights as in WFST

® ® :extension (multiplicative), ® : summary (additive)
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Weights a Semirings

D (w(627 uz, ug) @ d(uz) @ d(ug))
® The weight of a hyperedge is dependent on antecedents
(non-monotonic)

® The weight of a derivation is the product of hyperedge
weights

® The weight of a vertex is the summary of
(sub-)derivation weights =g



Semirings

K= (K,5,®,0,1)

semiring 0
Viterbi [0, 1] max X 0 I
Real R + X 0 I
Log R | logsumexp + 00
Tropical R min + + 00
Expectation | <P,R> PP “PI®P2, <0,0>|<1,0>
ri®r> PI®M®p2®r|>

60




Conclusion

® Review important concepts from “parsing”

® CFG, parsing, hypergraph, deductive
system, weights, semirings

ol



Tree-based MT

® [ree-based SMT
® Synchronous-CFG

62



-----------------
. "o
. "o
. ]
. .

LI
L]
L]

it X %47 Xz Bush held Xz Al

5 5% T 2% a talk with Sharon
exp (vvT -h(e, D, f )) (Chiang, 2007)
argmax

€ Ze’,D’ CXp (WT ' h(elv D, f))

= argmaxw ' -h(e,D,f)

®
|

e
® D:a single derivation constructed by intersecting
SCFG with input string
63



Synchronous-CFG: Model

Xpg), 91 X2>
(X, Xip)
(Xrq) 31T Xig), hold Xz Xpg))
<'%_ W with Sharon>

1
T

N
ek

p—d

INZ

X< K ! W
N

VP — (VBDg NPj, NPy VBDy)
NP — (NPq PPy, NPy PPy)
VP — (VBDq NPj PPy, NPg PPy VBDy)

® We use two categories, S and X (Chiang, 2007)

® Or, borrow linguistic categories from syntactic parse
(Zollman and Venugopal, 2006)
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ule Extraction

44

~

Tt 5

bwaEIT T e

)2
Bush [ <heﬁ_d\ a t\alﬁ\& with Sharon,
— )&jz ﬁ—é'/f_.l' I é'l;ﬁ>
held B
(with Sharon, & A7)
a
“ﬁ/_
talk . <h€1d, == ﬂ'>
with .
X = (Xq Xy ¥ 21, Xqg a talk X))
Sharon .

(Example from Huang and Chiang, 2007)
® As in phrase-based models, extract phrases then, use

sub-phrases as non-termélgals, aka Hiero (Chiang, 2007)



Bush
held

a

talk
with

Sharon

Syntactic Categories

AT

5

)27

T T i

(he!

d a tall

.

VBD¢

— VI

3D a talk PP,

k with Sharon,

> N\ N
DI =

<With Sharon, & 59‘i?>

4T T A%

(held, 21T)

VBD T &%

® Borrow syntactic categories either from source/
target side, aka SAMT(égIIman and Venugopal, 2006)



1 Xig T 21 Xg a talk Xy
X Xg 2% Xy a talk Xy

Bush .

held B Xq Xg 2% Xpg talk X
X 21T X5 held X5 X5
a
held a Xz X
talk X with Sharon
with B X5 X with X
S = (Sy X, S X))
Sh
aron . g <X1,X1>

® Exhaustively extract rules as in phrase-based MT

® + glue rules .



Features from Rules

I count (3, &)
logpr(a]f) = log ZO;, count(Ba 07)
log Pr(B @) = log countif (_1)

® Collect all the rules (&, B) from the data:
® (X = source side string, B = target side string
® Maximum likelihood estimates by relative frequencies

® Employ scores in two directions
63



Remarks on Rules

® Joo many rules extracted (Chiang, 2007):
® at most two non-terminal symbols

® at least one terminal between non-terminals in
the source side

® Span at most |5 words for “holes”
® Fractional counts (Chiang, 2007):
® Fach phrases counted in phrase-based MT

® Fractional counts for rules sharing the same

source/target span
69



Other Features

Lexical weights as used in phrase-based MT
ngram language model(s)

word count: bias for ngram language model(s)
rule count: shorter or longer phrases

glue-rule counts: bias for monotonic glue rules

70



Synchronous-CFG: Parsing

Xo0,6
r\)jgé/\\ RS
X, 6 X6
X -/ (Xq juxing X,
held X X))
Xo 1| | Xi13] [X34] |Xael [Xoi| |X34| [X4e X3
T Il i s i e
bushi juxing Bush talks
yu sha]ong le huitan hold with Sharon

® Parse input sentence using the source side, and
construct a translation forest by target side




Synchronous-CFG: Parsing

® Translation by SCFG = monolingual parsing
using the source side grammar

® Construct forest by the projected target
side

® From forests, compute the best derivation
(Huang and Chiang, 2005)

® Complexity: O(n?) as in monolingual CKY
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X

Non-Local Features

— (X juxing X5
held X5 X))

X6

J

-

X34

p(talk | 2) a talk

talks
meeting
meetings

held alfalk with)Sharon
CheIdCtaIks with)Sharon
held 2/ talk and)Sharon
held meetingJSharoerith

Update boundary
X,3| words only

with Sharon p(Sharon | with)
and Sharon p(Sharon | and)

Sharon with Pp(with | Sharon)
Sharon and P(and | Sharon)

® non-local features which requires out-of-span

context, i.e. bigram L7I;’I



Bigram Features

o held * Sharon
X = (Xg juxing Xp), held * Sharon

held X5 Xq) K16 held * Sharon

T held * with
[ N

X3,4 X|,3
a * talk with * Sharon
talks and * Sharon
meeting Sharon * with
meetings Sharon * and

® VWe keep only bigram states: (VWhy 2 words?)
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Language Model Updates

® Fach hypothesis keeps two contexts:
® Prefix: ngrams to be scored with antecedents

® Suffix: contexts for future ngrams (i.e. Phrase-
based MT)

e Complexity: O(n3V2(m-1)

® Very inefficient: we need to explicitly enumerate
all the hypotheses in antecedents
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Forest Rescoring

Translation by SCFG = monolingual parsing
using the source side grammar
Construct forest by the projected target

side + Rescore with non-local features

From forests, compute the best derivation
(Huang and Chiang, 2005)

S aYaalall2\4in VAl I nC rAac In-monolinoral C KO

/6



Cube Pruning

X — (X juxing X, ) S\\’&(O(\ 5\\’5(00 . a8 . RIS
held Xz X5 >~N°\<\’0 ®08>* 6\\’2’( o® 6\‘7’( o®
|.5 1.7 2.6 3.2
a*talk 1.0 2.5 2.7 3.6 4.2
talks 1.3 2.8 3.0 3.9 4.5
meeting 2.2 3.7 3.9 4.8 5.4
meetings 2.6 | 4.1 4.3 5.2 5.8

® For each hyperedge, create a “cube” representing
combinations of anteced%nts (Huang and Chiang, 2007)



Cube Pruning

— (X juxing X, %S\\Q’(O(\ 5\\’5(00 . a8 . RIS
held Xz X5 >~x~f\<\’0 ®0é* S\"&( o® S\"Z’( o®
|.5 1.7 2.6 3.2
a*talk 1.0] 2.5 2.7 3.6 4.2
talks 1.3 2.8 3.0 3.9 4.5
meeting 2.2 3.7 3.9 4.8 5.4
meetings 2.6 | 4.1 4.3 5.2 | 5.8

® Bigrams require contexts from antecedents:
non-monotonic scoring



Cube Pruning

ueue: (0,0 Q A0
k-best: 0 A ¥ o) o
o 72N S\ A\
|.5 |.7 2.6 3.2

a*talk 1.0 3.0

talks 1.3

meeting 2.2

meetings 2.6

® Starting from the upper-left corner, enumerate
antecedent combinag!}ons



Cube Pruning

ueue: .
1 oy ot 2 ot o % 2%
k-best: (0,0) oo W of o°
N\ 2 S\ S\
|.5 |.7 2.6 3.2

a*tallk 1.0 3.0

talks 1.3

meeting 2.2

meetings 2.6

® Starting from the upper-left corner, enumerate
antecedent combinag!)ons



Cube Pruning

ueue: .
queve O.(10) o ¢
k-best: (0,0) oo W of o°

o S e S\

|.5 |.7 2.6 3.2

a*talk 1.0 3.0 3.7

tallkks 1.3 3.1

meeting 2.2

meetings 2.6

® Starting from the upper-left corner, enumerate
antecedent combinagi]ons



Cube Pruning

ueue: (1,0 .
1 (1.9) oy ot 2 ot 4 o * °
k-best: (0,0)(0, 1) xoF W of o°
Qi 2 e e
|.5 1.7 2.6 3.2

a*talk 1.0 3.0 3.7

tallkks 1.3 3.1

meeting 2.2

meetings 2.6

® Starting from the upper-left corner, enumerate
antecedent combinagizons



Cube Pruning

queue: (1,0)(0,2) (I, 1) o RN

Q
_best: % O S\ Qo N
k-best: (0,0)(0, 1) \ri\'(\’(\ @06* 8\@(0 S\‘Q’(O
|.5 |.7 2.6 3.2
a*talk 1.0 3.0 3.7
talks 1.3 3. 4.5

meeting 22| 4.2

meetings 2.6

® Starting from the upper-left corner, enumerate
antecedent combinagiaons



Cube Pruning

queue: (0,2)(1,1) \\’A(Oo o IR
k-best: (0,0)(0,1) (] ,0)&\* 3 & ) RN
|.5 |.7 2.6 3.2
a*talk 1.0 3.0 3.7
talks 1.3 3.1 4.5

meeting 22| 4.2

meetings 2.6

® Starting from the upper-left corner, enumerate
antecedent combinagons



Cube Pruning

queue: (0,2) (1,1)(3,0) S S
k-best: (0,0)(0,1) (] ,0)&\* 3 & ) RN
|.5 |.7 2.6 3.2
a*talk 1.0 3.0 3.7 5.1
talks 1.3 3.1 4.5

meeting 22| 4.2

meetings 2.6

® Starting from the upper-left corner, enumerate
antecedent combinagig)ons



Cube Pruning

queue: (1,1)(3,0) " o 5\\’5(00 LS
k-best: (0,0)(0,1)(1,0) (Qﬁ) @06 5\\'5(00 S\\Q’(OQ
|.5 |.7 2.6 3.2
a*talk 1.0 3.0 3.7 5.1
talks 1.3 3.1 4.5

meeting 22| 4.2

meetings 2.6

® Starting from the upper-left corner, enumerate
antecedent combinag@sons



Cube Pruning

queue: (0,4) (1,1)(1,2) (3,0)

o o O
k-best: (0,0)(0,1)(1,0) (Qi) & S S\@(oﬂ\ s\@(oﬂ\
1.5 1.7 2.6 3.2
a*talk 1.0 3.0 3.7 5.1

talks 1.3 3. 4.5

meeting 22| 4.2 4.9

meetings 2.6 | 44

® Starting from the upper-left corner, enumerate
antecedent combinag@ons



Multiple Rules

X446 Xi,3
X34

® Multiple rules sharing the same span are queued
® Fach rule is associated with a cube

® hypothesis = hyperedge + cube-position

383



Further Faster Pruning
® Cube Growing (Huang and Chiang, 2007)

® Jop-down pruning combined with heuristic
estimates

® Faster Cube Pruning (Gesmundo and Henderson,
2010)

® Eliminate bookkeeping for inserted hypotheses by
determining the ordering of cube enumerations

® Push minimum hypotheses by looking up ancestors
® |[ncremental (Huang and Mi, 2010)
® Top-down decoding as in (VWatanabe et al., 2006)



Conclusion

® Synchronous-CFG
® paired CFG + shared non-terminal symbols

® Training is based on phrase-based MT by
treating sub-phrase as a non-terminal

® Decoding: monolingual parsing
® An efficient antecedent combination via

cube-pruning
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Tree-based MT

® String-to-Tree, Tree-to-String
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{Tree,String}-to-{Tree,String}

-------
---------------
----
- L
. n
.« * "N
I

-----------
----------

NPB VR.oooemmreem IO N g

-
. [ ]
....
L

I . u,o I ”" /\:'\
-------------------------- doT
bushi PP e VPB Bush . x5 e Ty

/\ LI“‘ /I\ L /ﬁ\ /\h\
P NPB VS AS NPB held a xg with 27
| | o | |
yu shalongjuxing le huitan talk Sharon

(Galley et al., 2004)

® Fach synchronous rule has a subtree structure

® Flat structure + sharing the same non-terminal

symbols = synchronous-CFG
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Tree-to-String Rules
PP

PP VPDB —
P NPB VS AS z::NPB | T

| | | | dang x1:IP LC
yu shalong juxing le |

— with Sharon — held a z7 hou

— when x4

NP
QP P o~
— — DNP NP
r1:CD CLP  z,:NP VP -
| — ™~ z.:NP DEG
ben ZEQZIP Q?gIVPB |
— X1 — 1 XT3 I9 de

o — X9 of 21



JL—ILDh L

IP
/\
NPB VP
| /\
bushi PP VPB

‘\ /\ /I\
' P NPB VS AS NPB

1

o o

' yu shalong Juxmg le hu1tan

Bush held a talk Wlth Sharon
(Galley et al., 2004)

® Compute “minimum rules” as in phrase-based
MT
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Rule Extraction

IP(0,1,3,4,5)
/\
NPB(0) VP (1,3,4,5)
| —
bushi  PP(4,5) VPB(1,3)
‘\ /\ /I\
\ f‘>(4) NPB(S) VS()ATINPRG)

' yu Shalong Juxmg le hu1tan

’f ~~~
‘ L L
- —y

Bush held a talk Wlth Sharon
(Galley et al., 2004)

® Compute “spans” by propagating alignment in
bottom-up
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Rule Extraction
IP(0,1,3,4,5)()

/\
NPB(0)(1,3,4,5) vP (1,3,4,5)(0)
| /\
bushi  PP(4,5)(0,1,3) VPB(1,3)(0,4,5)
\ PN — T
0,1,3,5)R4)NPB(5) VS 1)AS | INPB3)(0,[,4,5
AT TN E R CATER L S

‘ . .
. yu shalong juxing ’l_e h}lltan
-~ o -

- L
- = =~ -~ o
- -y

® Compute “complements” in top-down
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Rule Extraction
[P(0,1,3,4,5)()

/\
NPB(0)(1,3,4,5) vP(!,3,4,5)(0)
| /\
bushi | PP(4,5)(0,1,3) VPB(I,3)0,4,5)
' el
0,1,3,5)R4) NPB(5) VS(1)ASINPB3)O0,1,4,5
R (RTER TN & ) CATER L

‘ . .
. yu shalong juxing ’l_e h}ntan
-~ o -

- L
- = =~ -~ o
- -y

® Compute “frontiers”: The nodes in which the
intersection of “spans™ and “complements”™ is empty



Rule Extraction

IP
T~
— r1:NPB x1:VP

bushi =~ PP VPB

‘\ /\ /I\
' P NPB VS AS NPB

1

o o

' yu shalong Juxmg le hu1tan

oo =g

-
- - ~~

Bush held a talk Wlth Sharon

® Extract minimum rules using frontiers



Rule Extraction

p NPB
|
/\ .
VP bushi
bushi PP VPB

‘\ /\ /I\
' P NPB VS AS NPB

1

o o

' yu shalong Juxmg le hu1tan

oo =g

-
- - ~~

Bush held a talk Wlth Sharon

® Extract minimum rules using frontiers



Rule Extraction

%\

s VS AS z;:NPB
| |
N]i)B VP juxing le
/\
bushi PP —> held a x1

\‘ /\ P
P NPB VS AS

1

o o

' yu shalong Juxmg le hu1tan

Bush held a talk Wlth Sharon

® Extract minimum rules using frontiers



Rule Extraction

1P VP
—— z1:PP VPB
— = VS AS mPE
bushi juxing le
“ N __— = held a zo x4

' P NPB VS AS

o o

' yu shalong Juxmg le hu1tan

~~

Bush held a talk Wlth Sharon

(Galley et al., 2006)
® Extract “‘compound rules” by combining

minimum rules (i.e. longer phrases)
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Decoding: String-{String, Tree}

P DNP ro:NP
VS AS z1:NPB T
| | r1:NP DEG
juxing le |
de

— held a x4
— T of x4

(VPB — juxing le NPB;, (NP — NP; de NPy,

r — hold a x1) r — xy of 1)
(Galley et al., 2004)

® Similar to SCFG decoding: Use the “collapsed”
source side rule to perform CKY parsing

® Construct a translation forest using the target side
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Decoding: Tree-{String, Tree}

IP 1
/\
NPB VP T2 T3
| — | /\
bushi PP | Bush Tr X4
O — N N

P NPB VS AS NPB held a xzg with 2~
P P |

|
yu shalong juxing le huitan talk Sharon

. . . (Huang et al., 2006)
® First, an input sentence is parsed

® |nput tree is transformed into a translation forest by

tree rewriting
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Forest Rescoring

® Translation by {tree,string}-to-{tree,string}

® string-to-{tree,sting}: parsing using the
source-side grammar

® tree-to-{tree,string}: parse input
sentences t+ tree-match-rewrite

® Construct forest by the projected target
side

® From forests, compute the best derivation
(Huang and Chiang, 2005)
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Conclusion

® {String, Tree}-to-{String, Tree} translation models

® Rules extraction by GHKM (Galley et al., 2004)
® Galley M, Hopkins M, Knight K, Marcu D, 2004

® Decoding:
® String-to-{String, Tree} by CKY

® Tree-to-{String, Tree} by tree-rewrite
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More on [ree-based Models

® Forest-based approach:instead of |-best parse, use

forest encoding k-bests (Mi and Huang, 2008; Mi et
al., 2008)

® “Binarized forest” as an alternative to represent
multiple parses (Zhang et al., 201 |)

® Fuzzy tree-to-tree as a way to overcome
“stricktness” of tree-based models (Chiang, 2010)

® Use of dependency (Mi and Liu, 2010; Xie et al., 201 |)
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Tree-based MT

® Backgrounds

® CFG, parsing, hypergraph, deductive
system semirings

® [ree-based SMT
® Synchronous-CFG

® String-to-Tree, Tree-to-String
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Structures in SMT

® Syntactic Structures in System Combination



MT System Combination by
Confusion Forest

Taro Watanabe and Eiichiro Sumita
@ NICT



MT System Combination

® Better translation by combining multiple system
outputs:

® Sentence selection(Nomoto, 2004; etc.)

® Phrasal combination (Frederking and Nirenbursg,
1994; etc.)

® Word level combination (Bangalore et al., 2001;
Matusov et al., 2006; etc.)

® This Work: Syntactic combination, not word-wise
combination



Confusion Network

Yy I ssaw thhe foreforest
I wabikdd tlthebludubordstrest

I saaw thhe greegredmedsees

the forest tlweas founidrest was found

® State-of-the-art: Confusion Network

® Choose a skeleton, compute word alighment against the
skeleton

® Edit-distance-based alignment (TER etc.) (Sim et al., 2007)

® Model-based alignment(GIZA++ etc.) (Matsov et al,,
2006)



Confusion Network

forest trees found

g AL S B

€  walked € green was

® Construct a network with each arc representing alternative
translation

® Best path = Best translation
® Syntactically different language pairs: i.e. active/passive voices
® Spurious insertion/repetition due to alignment error

® [ncremental alignment/construction + merge multiple
networks into one (Rosti et al., 2008)



IR

— (

NP®! vBD®3 yvp©4

—

PRP DT NN was VBN “ \

Confusion Forest

(VP2 [VBD® vpatl)
<VP@2, <(VBD@2.1 7 NP@2.2 }>

Qv
—
|

VP2

M
(\V)
|

VBD@?-!

T walked saw NP©@2-2

the forest found

7\

DT@2.2.1 NN@2.2.2
[ [

the blue green NN  the forest

forest trees

~ N ® Compactly represent multiple
parses by sharing nodes

® Represented by “hypergraph”



Rule Extraction

forest

NP VP
"\ "\
/ \ / \\
DT \NN VBI} VP
the |[forest| was || VBN

found

® Parse each system output by a parser

S

NP
PRP
VP
VBD
NP
DT

NN
VP

VBD
VP
VBN

R A

NP
PRP
I
VBD NP
Saw
DT
the

forest
VBD VP

was
VBN

found

VP

NN

® Extract rules from parsed trees: local grammar



Generation by Earley

Scan: _ _
X - aexfB,h|:u
X = arefS,h|l:u
Predict: X S aeYB N
[Y%o%h—l—l’] LU YoyeGh<H
Complete:

X —aeYS,hl:u [Y—~vye,h+1]:v
X —>aYefS hl:u®uw

® Generation from the extracted grammar

® Scanning always succeed: constraint by height



Generation by Earley

BN
VP2

—(

NP@l VBD@3 VP@4

— ] I VBD@>!
PRP DT NN was VBN “ \

[ f I walked saw NP©%2

I the forest found /\

DT 1] @221 NN©2:2:2
7N ] ]
the blue green NN the forest

N

forest trees



Spurious Ambiguity

hJ

ST

NP S NP :eVP

| NP : o VP NI

PRP e VBD : NP NH N
‘ ‘ /‘///\
I Saw DT NN
| |
the forest v
<€ >

® Memorize the (partial) tree structures in each node
® Employ the sequence of Ealrye state as a node

® Horizontal/Vertical Markovization (Klein and Manning, 2003)



Forest Reranking

AN

d = argmaxw ' -h(d, F)
deD

® Choose the best derivation d among all possible
derivations D in a forest F

Terminal yield of the best derivation = the best
translation

Approximately apply non-local features (ngram language
models) by Cube Pruning (Huang and Chiang, 2007)

Efficient k-best by Algorithm 3 (Huang and Chiang, 2005)



Experiments

® WMTIO System Combination Task

® (Czech, German, Spanish, French— English

® tune/test: 455/2,034 sentences

systems

tune

test




Systems

® CF: Stanford parser + “cicada” (a hypergraph-based
toolkit based on SEMIring parsing framework)

® CN:Single network by merging multiple networks +
conversion into hypergraph by lattice parsing

® features: tuned by hypergraph-MERT (Kumar et al. 2009)
® [anguage Models, # of terminals, # of hyperedges
® # of rules in a derivation originally in n¢, system output

® BLEUs by treating each system output as a reference
translation

® Network distance (only used for CN)



de-en es-en




Oracle BLEU

de-en es-en

rerank

@\




CN

CEv=00,h=1

CEv=5,h=1

CEv=4,h=1

2,227.68

47,231.20

Hypergraph size

2,932.24

11,969.40

230.08 540.03 262.30 386.79
254.45 651.10 302.01 477.51
286.01 802.79 349.21 575.17

® Average # of hyperedges

® (rough) estimates for speed



Conclusion

® System combination by Confusion Forest which
employs syntactic distance, not word-level
distance

® Forest construction by the grammar extracted
from system outputs

® Parser:assign tree structure to the similar
expressions

® Compact date structure + comparable
performance against Confusion Network



Structures in SMT

® TJutorial
® Phrase-based MT
® [ree-based MT

® Syntactic Structures in System Combination



Research on MT

® Reading: at least 50 papers are related to MT
“every year”

® Specialist: solve a sub-problem

® | anguage Neutral: a solution which works only
for a particular language pair is boring



