Structures in Statistical Machine Translation

Taro Watanabe @ NICT taro . watanabe @ nict . go . jp

Machine Translation

- We learn parameters from data assuming a "model"
- Decode by the learned parameters

Channel Model

$$X \Longrightarrow$$
 Process $\Rightarrow Y$

Translation Model

$$\hat{\mathbf{e}} = \operatorname*{argmax}_{\mathbf{e}} \underbrace{Pr(\mathbf{f}|\mathbf{e})}_{\mathbf{P}r(\mathbf{e})}$$

Translation Model Language Model

(Brown et al., 1990)

- Translation Model: adequacy of translation
- Language Model: grammatical correctness, consistent style, fluency

Language Model

Pr(I do not know) = ?Pr(I not do know) = ?

- Likelihood of a string of English words
- Usually modeled by ngrams

$$W = w_1, w_2, w_3, \cdots w_N$$

$$p(W) = p(w_1, w_2, w_3, \cdots, w_N)$$

$$= p(w_1)p(w_2|w_1)p(w_3|w_1, w_2) \cdots$$

$$p(w_N|w_1, w_2, w_3, \cdots, w_{N-1})$$

ngram Language Model

- Markov assumption: only n-word history is memorized
- Bigram:

p(I do not know) = p(I)p(do|I)p(not|do)p(know|not)

 Training: Maximum likelihood estimate + smoothing (Good-Turing, Witten-Bell, Kneser-Ney etc.)

Word-based MT

(Brown et al., 1993)

Phrase-based MT

(Koehn et al., 2003)

Hierarchical PBMT

Structures in SMT

• Tutorial

- Phrase-based MT
- Tree-based MT
- Syntactic Structures in System Combination

Why Phrases?

- Use phrases as a unit of translations
 - Directly handle many-to-many word correspondence + local reordering
 - Allow local context + non-compositional phrases
- Employed in many systems, including Google, NICT(VoiceTra, TexTra) and open-source, Moses (<u>http://www.statmt.org/moses/</u>)

Phrase-based Model

- Generative story:
 - f is segmented into phrases
 - Each phrase is translated
 - Translated phrases are reordered

Phrase-based Model

$$\hat{\mathbf{e}} = \operatorname{argmax}_{\mathbf{e}} \frac{\exp\left(\mathbf{w}^{\top} \cdot \mathbf{h}(\mathbf{e}, \phi, \mathbf{f})\right)}{\sum_{\mathbf{e}', \phi'} \exp\left(\mathbf{w}^{\top} \cdot \mathbf{h}(\mathbf{e}', \phi', \mathbf{f})\right)}$$
$$= \operatorname{argmax}_{\mathbf{e}} \mathbf{w}^{\top} \cdot \mathbf{h}(\mathbf{e}, \phi, \mathbf{f})$$

- Maximization of a log-linear combination of multiple feature functions h(e, Φ, f)
- Φ : phrasal partition of f and e
- w: weight of feature functions

Questions

$$\hat{\mathbf{e}} = \operatorname*{argmax}_{\mathbf{e}} \mathbf{w}^{\top} \cdot \mathbf{h}(\mathbf{e}, \phi, \mathbf{f})$$

- Training: How to learn phrases and parameters (Φ and h)?
- Decoding (or search): How to find the best translation (argmax)?
- Tuning (or optimization): How to learn the scaling of features (w)?

Training

- Learn phrase pairs from $\mathcal{D} = \langle \mathcal{F}, \mathcal{E} \rangle$
- A standard heuristic approach

(Koehn et al., 2003)

- Compute word alignment
- Extract phrase pairs
- Score phrases

(Example from Huang and Chiang, 2007)

Extract Phrase Pairs

From word alignment, extract a phrase pair consistent with word alignment

Exhaustive Extraction

• Exhaustively extract phrases from f, e

Features from Phrases

$$\log p_{\phi}(\bar{\mathbf{f}}|\bar{\mathbf{e}}) = \log \frac{\operatorname{count}(\bar{\mathbf{e}}, \bar{\mathbf{f}})}{\sum_{\bar{\mathbf{f}}'} \operatorname{count}(\bar{\mathbf{e}}, \bar{\mathbf{f}}')}$$
$$\log p_{\phi}(\bar{\mathbf{e}}|\bar{\mathbf{f}}) = \log \frac{\operatorname{count}(\bar{\mathbf{e}}, \bar{\mathbf{f}})}{\sum_{\bar{\mathbf{e}}'} \operatorname{count}(\bar{\mathbf{e}}', \bar{\mathbf{f}})}$$

- Collect all the phrase pairs from the data
- Maximum likelihood estimates by relative frequencies
- Employ scores in two directions

Features from Alignment

$$\log p_{lex}(\bar{\mathbf{f}}|\bar{\mathbf{e}},\bar{\mathbf{a}}) = \log \prod_{i}^{|\bar{\mathbf{e}}|} \frac{1}{|\{j|(i,j)\in\bar{\mathbf{a}}\}|} \sum_{\forall (i,j)\in\bar{\mathbf{a}}} t(e_i|f_j)$$
$$\log p_{lex}(\bar{\mathbf{e}}|\bar{\mathbf{f}},\bar{\mathbf{a}}) = \log \prod_{j}^{|\bar{\mathbf{f}}|} \frac{1}{|\{i|(j,i)\in\bar{\mathbf{a}}\}|} \sum_{\forall (j,i)\in\bar{\mathbf{a}}} t(f_j|e_i)$$

- Lexical weighing which scores by word translation probabilities
- Idea: counts for rare phrase pairs are unreliable
 - Smoothing effect by decomposing into word pairs

Features for Distortion

• Distance-based distortion modeling $d(\mathbf{f},\phi,\mathbf{e}) = |+2| + |0| + |-5| = 7$

Features for Reordering

- Fine grained reordering features: $\log p_o(o \in \{m, s, d\} | \bar{\mathbf{f}}, \bar{\mathbf{e}})$
- Either monotone, swap, discontinuous

Other Features

- log of ngram language model(s)
- word count: bias for ngram language model(s)
- phrase count: shorter or longer phrases

Direct Training

- Instead of word alignment + extraction pipeline, directly learn phrase-pairs (Marcu and Wong, 2002)
- Bayesian approach + blocked Gibbs sampling to learn parameters (Blunsom et al., 2009)
- Exhaustively memorize longer phrases (Neubig et al., 2011)

Questions

 $\hat{\mathbf{e}} = \operatorname*{argmax}_{\mathbf{e}} \mathbf{w}^{\top} \cdot \mathbf{h}(\mathbf{e}, \phi, \mathbf{f})$

- Training: How to learn phrases and parameters (Φ and h)?
- Decoding (or search): How to find the best translation (argmax)?
- Tuning (or optimization): How to learn the scaling of features (w)?

$$\hat{\mathbf{e}} = \operatorname{argmax}_{\mathbf{e}} \frac{\exp\left(\mathbf{w}^{\top} \cdot \mathbf{h}(\mathbf{e}, \phi, \mathbf{f})\right)}{\sum_{\mathbf{e}', \phi'} \exp\left(\mathbf{w}^{\top} \cdot \mathbf{h}(\mathbf{e}', \phi', \mathbf{f})\right)}$$
$$= \operatorname{argmax}_{\mathbf{e}} \mathbf{w}^{\top} \cdot \mathbf{h}(\mathbf{e}, \phi, \mathbf{f})$$

- Given an input sentence f and phrasal model h and w, seek e with the highest score
- Potential errors:
 - Search error: we cannot find the best scored hypothesis
 - Translation error: highest scored hypothesis is bad

Enumerate Phrase Pairs

shalong juxing yu

- Given a input sentence f, we can enumerate all possible phrases that match with the source side
- Choose the best phrase pair + ordering

Phrase-based Search Space

- Node: bit-vector representing covered source words
- Edge: phrasal translations, strictly left-to-right
- Search space: $O(2^n)$, Time: $O(2^nn^2)$ (Why?)

Traveling Salesman Problem

- NP-hard problem: visit each city only once
- MT as a Traveling Salesman Problem (Knight, 1999)
 - Each source word corresponds to a city
 - A Dynamic Programming solution:
 - State: visited cities (bit-vector)
 - Search space: O(2ⁿ)
 - Distortion limit to reduce search space
 i.e. long distortion: •----

Non-local features

- Features that requires scoring out of phrases: bigram language model
- Additional state representation required for "future scoring": I-word for bigram LM
- Space: $O(2^n V^{m-1})$, Time: $O_{32}(2^n V^{m-1} n^2)$ for m-gram LM

Phrase-based Decoding

- Re-organize the search space by the cardinality (= # of covered source words)
- Expand hypotheses from the smallest cardinality first

Pruning

- Prune hypotheses in a bin sharing the same cardinality
- Expand survived hypotheses only

Questions

 $\hat{\mathbf{e}} = \operatorname*{argmax}_{\mathbf{e}} \mathbf{w}^{\top} \cdot \mathbf{h}(\mathbf{e}, \phi, \mathbf{f})$

- Training: How to learn phrases and parameters (Φ and h)?
- Decoding (or search): How to find the best translation (argmax)?
- Tuning (or optimization): How to learn the scaling of features (w)?

$$\hat{\mathbf{e}} = \operatorname{argmax}_{\mathbf{e}} \frac{\exp\left(\mathbf{w}^{\top} \cdot \mathbf{h}(\mathbf{e}, \phi, \mathbf{f})\right)}{\sum_{\mathbf{e}', \phi'} \exp\left(\mathbf{w}^{\top} \cdot \mathbf{h}(\mathbf{e}', \phi', \mathbf{f})\right)}$$
$$= \operatorname{argmax}_{\mathbf{e}} \mathbf{w}^{\top} \cdot \mathbf{h}(\mathbf{e}, \phi, \mathbf{f})$$

- Three popular objectives (in SMT) for tuning w
 - (Direct) Error Minimization (Och, 2003)
 - Maximum Entropy (Och and Ney, 2002)
 - Large Margin (Watanabe et al., 2007; Chiang et al., 2008; Hopkins and May, 2011)

(Direct) Minimum Error $\hat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w}} \sum_{s=1}^{S} l(\operatorname{argmax}_{\mathbf{e}} \mathbf{w}^{\top} \cdot \mathbf{h}(\mathbf{e}, \mathbf{f}_{s}), \mathbf{e}_{s})$

- MERT (Minimum ERror Training)
- Standard in SMT (but not in other NLP areas, such as tagging etc.)
 - We can incorporate arbitrary error functions, l
 - "Summation" can be replaced by document-wise BLEU specific summation
 - 10+ real valued features

n-best Approximation

- 1: procedure MERT($\{(\mathbf{e}_s, \mathbf{f}_s)\}_{s=1}^S$)
- 2: **for** n = 1...N **do**
- 3: Decode and generate nbest list using w
- 4: Merge nbest list
- 5: **for** k = 1...K **do**
 - for each parameter m = 1...M do
 - Solve one dimensional optimization
- 8: end for
- 9: update w
- 10: **end for**
- 11: **end for**

6:

7:

- 12: end procedure
- N iterations, with each iteration, n-bests are generated and merged
 - K iterations, with each iteration, M dimensions are tried (M = # of features), and w is updated

Efficient Line Search

- If we choose one dimension m, and others fixed, we can treat each hypothesis e as a "line"
- Compute convex hull of a set of "lines"

Error Surface

MERT in Practice

- Many random starting points (Macherey et al., 2008; Moore and Quirk, 2008)
- Many random directions (Macherey et al., 2008)
- Error count smoothing (Cer et al., 2008)
- Regularization (Hayashi et al., 2009)
- Multi-dimensional search by efficiently computing convex hull (Galley and Quirk, 2011)
- MERT at least 3 times, and report average BLEU (Clark et al., 2011)

$$\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} \frac{\lambda}{2} ||\mathbf{w}||^2 - \sum_{s=1}^{S} \log \frac{\sum_{\mathbf{e}^* \in \mathsf{ORACLE}(\mathbf{f}_s)} \exp\left(\mathbf{w}^\top \cdot \mathbf{h}(\mathbf{e}^*, \mathbf{f}_s)\right)}{\sum_{\mathbf{e}' \in \mathsf{GEN}(\mathbf{f}_s)} \exp\left(\mathbf{w}^\top \cdot \mathbf{h}(\mathbf{e}', \mathbf{f}_s)\right)}$$

- Minimize the negative log-likelihood of generating good translations (Och and Ney, 2002)
- ORACLE is a subset of GEN, a set of hypotheses with minimum loss
- Optimized by L-BFGS or SGD
- Potentially large # of features as in NLP tasks

Why Not MaxEnt?

error criterion used in training	mWER [%]	mPER [%]	BLEU [%]	NIST	# words
confidence intervals	+/- 2.7	+/- 1.9	+/- 0.8	+/- 0.12	-
MMI	68.0	51.0	11.3	5.76	21933
mWER	68.3	50.2	13.5	6.28	22914
smoothed-mWER	68.2	50.2	13.2	6.27	22902
mPER	70.2	49.8	15.2	6.71	24399
smoothed-mPER	70.0	49.7	15.2	6.69	24198
BLEU	76.1	53.2	17.2	6.66	28002
NIST	73.3	51.5	16.4	6.80	26602

- In Och and Ney (2002), they used
 - WER to select oracle translations
 - n-best merging approach to approximate summation as in MERT

$$\hat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w}} \frac{\lambda}{2} ||\mathbf{w}||^2 + \sum_{s=1}^{S} \sum_{\mathbf{e}_s^*} \sum_{\mathbf{e}_s'} \xi_{s,\mathbf{e}_s^*,\mathbf{e}_s'}$$
$$\mathbf{w}^\top \cdot \mathbf{h}(\mathbf{e}_s^*,\mathbf{f}_s) - \mathbf{w}^\top \cdot \mathbf{h}(\mathbf{e}_s',\mathbf{f}_s) \ge l(\mathbf{e}_s',\mathbf{e}_s^*) - \xi_{s,\mathbf{e}_s^*,\mathbf{e}_s'}$$
$$\mathbf{e}_s^* \in \mathsf{ORACLE}(\mathbf{f}_s)$$
$$\mathbf{e}_s' \in \mathsf{GEN}(\mathbf{f}_s)$$

- Structured output learning approach
- Very hard to enumerate all possible e' and oracle translations e*
- Solution: online learning or n-best approximation

Online Learning **Require:** $\{(\mathbf{f}_s, \mathbf{e}_s)\}_{s=1}^{S}$ 1: $\mathbf{w}^1 = \{0\}$ 2: t = 13: for 1...N do 4: $s \sim \operatorname{random}(1, S)$ 5: $\hat{\mathbf{e}} \in \mathsf{GEN}(\mathbf{f}_s, \mathbf{w}^{t-1})$ 6: **if** $l(\hat{\mathbf{e}}, \mathbf{e}_s) \ge 0$ **then** 7: $\mathbf{w}^{t+1} = \mathbf{w}^t + \mathbf{h}(\mathbf{e}_s, \mathbf{f}_s) - \mathbf{h}(\hat{\mathbf{e}}, \mathbf{f}_s)$ 8: t = t + 19: end if 10: **end for** 11: return \mathbf{w}^t or $\frac{1}{N} \sum_{i=1}^{N} \mathbf{w}^i$ Averaged perceptron (Liang et al., 2006)

 Scale to large data, but each iteration requires decoding + weight update

- line 7 is replaced by the solution of the above equation
- Still, requires decoding + update in each iteration
- Hard to determine when to stop (watch another dev data)

$$\begin{aligned} & \hat{\mathbf{Ranking}} \operatorname{Approach}_{s} \\ & \hat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w}} \frac{\lambda}{2} ||\mathbf{w}||^2 + \sum_{s=1}^{S} \sum_{\mathbf{e}''_s} \sum_{\mathbf{e}'_s} \xi_{s,\mathbf{e}''_s,\mathbf{e}'_s} \\ & -\log\left(1 + \exp(-\mathbf{w}^\top \cdot \Delta \mathbf{h}_{\mathbf{e}''_s,\mathbf{e}'_s})\right) \geq -\xi_{s,\mathbf{e}''_s,\mathbf{e}'_s} \\ & \mathbf{e}''_s, \mathbf{e}'_s \in \mathsf{GEN}(\mathbf{f}_s) \\ & l(\mathbf{e}'_s, \mathbf{e}''_s) > 0 \\ & \Delta \mathbf{h}_{\mathbf{e}''_s,\mathbf{e}'_s} = \mathbf{h}(\mathbf{e}''_s, \mathbf{f}_s) - \mathbf{h}(\mathbf{e}'_s, \mathbf{f}_s) \end{aligned}$$

- An n-best approximation approach (Hopkins and May, 2011)
- Pair-wise comparison of all the hypotheses
- logistic-loss (or 0-1 loss): use an off-the-shelf binary classifier

Results

• Reranking is competitive to MERT and MIRA, and scales to large $\#_{48}$ of features

Answered?

- Grammar-less model (but very strong)
- Fast decoding
- Why MERT? (Good for non-binary, numerical features)

Structures in SMT

• Tutorial

- Phrase-based MT
- Tree-based MT
- Syntactic Structures in System Combination

Tree-based MT

- Backgrounds
 - CFG, parsing, hypergraph, deductive system semirings
- Tree-based SMT
 - Synchronous-CFG
 - String-to-Tree, Tree-to-String

Backgrounds: CFG

 parsing = intersection of CFG with a string (regular grammar)

- Bush held a talk with Sharon
- $O(n^3)$: For each length n, for each position i, for each rule X \rightarrow Y Z, for each split point k
- (Bottom-up) topological order

Hypergraph

- h(e): head node of hyperedge e
- T(e): tail node(s) of hyperedge e, arity = |T(e)|
- hyperedge = instantiated rule
- Represented as and-or graphs

Deductive System

- Parsing algorithm as a deductive system
- We start from initial items (axioms) until we reach a goal item
- If antecedents are proved, its consequent is proved
- deduction = hyperedge

Packed Forest

(Klein and Manning, 2001; Huang and Chiang, 2005)

- A polynomial space encoding of exponentially many parses by sharing common sub-derivations
- Single derivation = tree

Summary of Formalisms

hypergraph	AND/OR graph	CFG	deductive system	
vertex	OR-node	symbol	item	
source-vertex	leaf OR-node	terminal	axiom	
target-vertex	root OR-node	start symbol	goal item	
hyperedge	AND-node	production	instantiated deduction	

 $\langle v, \{u_1, u_2\} \rangle$

 $v \to u_1 \ u_2$

 $\frac{u_1 \ u_2}{v}$

- Associate weights as in WFST
- ⊗ : extension (multiplicative), ⊕ : summary (additive)

- The weight of a hyperedge is dependent on antecedents (non-monotonic)
- The weight of a derivation is the product of hyperedge weights
- The weight of a vertex is the summary of (sub-)derivation weights 59

Semirings

$\mathbf{K} = \langle K, \oplus, \otimes, \mathbf{0}, \mathbf{1} \rangle$

semiring	K	\oplus	\bigotimes	0	
Viterbi	[0,1]	max	×	0	I
Real	R	+	X	0	Ι
Log	R	logsumexp	+	+∞	0
Tropical	R	min	+	+∞	0
Expectation	<p,r></p,r>	<pı⊕p₂, rı⊕r₂></pı⊕p₂, 	<pı⊗p₂, pı⊗r₂⊕p₂⊗rı></pı⊗p₂, 	<0,0>	<1,0>

Conclusion

- Review important concepts from "parsing"
 - CFG, parsing, hypergraph, deductive system, weights, semirings

Tree-based MT

• Backgrounds

- CFG, parsing, hypergraph, deductive system semirings
- Tree-based SMT
 - Synchronous-CFG
 - String-to-Tree, Tree-to-String

 D: a single derivation constructed by intersecting SCFG with input string 63

Synchronous-CFG: Model

- $S \rightarrow \left\langle S_{\boxed{1}} X_{\boxed{2}}, S_{\boxed{1}} X_{\boxed{2}} \right\rangle$
- $S \rightarrow \langle X_{1}, X_{1} \rangle$
- $X \rightarrow \langle X_{1}$ 举行 X_{2} , hold $X_{2} X_{1} \rangle$
- $X \rightarrow \langle$ 与沙龙, with Sharon \rangle
- $\mathrm{VP} \ \ \rightarrow \ \ \left\langle \mathrm{VBD}_{\boxed{1}} \ \mathrm{NP}_{\boxed{2}}, \ \mathrm{NP}_{\boxed{2}} \ \mathrm{VBD}_{\boxed{1}} \right\rangle$
- $\mathrm{NP} \rightarrow \langle \mathrm{NP}_{1} \mathrm{PP}_{2}, \mathrm{NP}_{1} \mathrm{PP}_{2} \rangle$
- $\mathrm{VP} \ \rightarrow \ \left\langle \mathrm{VBD}_{1} \ \mathrm{NP}_{2} \ \mathrm{PP}_{3}, \ \mathrm{NP}_{2} \ \mathrm{PP}_{3} \ \mathrm{VBD}_{1} \right\rangle$
- We use two categories, S and X (Chiang, 2007)
- Or, borrow linguistic categories from syntactic parse (Zollman and Venugopal, 2006)

Rule Extraction

布什 与 沙龙举行 了 会谈

 As in phrase-based models, extract phrases then, use sub-phrases as non-terminals, aka Hiero (Chiang, 2007)

Syntactic Categories 布什 与 沙龙举行 了 会谈 Bush Meld VBD Meld A talk with Sharon, ち 沙龙 举行 了 会谈〉 (with Sharon, 与 沙龙〉

 talk
 NP
 〈held, 举行〉

 with
 PP
 VP → VBD a talk PP, PP VBD 了 会谈

 Sharon
 Image: Constraint of the second se

 Borrow syntactic categories either from source/ target side, aka SAMT(Zollman and Venugopal, 2006)

Exhaustive Extraction 布什 与 沙龙举行 了 会谈 $X_{1} X_{2}$ 了会谈 X_{2} a talk X_{1} Bush $X_{1} X_{2}$ **会谈** X_{2} a talk X_{1} X_1 X₂ 会谈 X₂ talk X₁ held X_{1} 举行 X_{2} held X_{2} X_{1} a X_1 举行了 X_2 held a X_2 X_1 与沙龙 X_{1} X_{1} with Sharon talk 与 X_{1} X_{2} X_{2} with X_{1} with $S \rightarrow \langle S_{1} X_{2}, S_{1} X_{2} \rangle$ Sharon $S \rightarrow \langle X_{1}, X_{1} \rangle$

- Exhaustively extract rules as in phrase-based MT
- + glue rules

Features from Rules

$$\log p_r(\bar{\alpha}|\bar{\beta}) = \log \frac{\operatorname{count}(\bar{\beta}, \bar{\alpha})}{\sum_{\bar{\alpha'}} \operatorname{count}(\bar{\beta}, \bar{\alpha'})}$$
$$\log p_r(\bar{\beta}|\bar{\alpha}) = \log \frac{\operatorname{count}(\bar{\beta}, \bar{\alpha})}{\sum_{\bar{\beta'}} \operatorname{count}(\bar{\beta'}, \bar{\alpha})}$$

- Collect all the rules (α, β) from the data:
 - α = source side string, β = target side string
- Maximum likelihood estimates by relative frequencies
- Employ scores in two directions

Remarks on Rules

- Too many rules extracted (Chiang, 2007):
 - at most two non-terminal symbols
 - at least one terminal between non-terminals in the source side
 - Span at most 15 words for "holes"
- Fractional counts (Chiang, 2007):
 - Each phrases counted in phrase-based MT
 - Fractional counts for rules sharing the same source/target span

Other Features

- Lexical weights as used in phrase-based MT
- ngram language model(s)
- word count: bias for ngram language model(s)
- rule count: shorter or longer phrases
- glue-rule counts: bias for monotonic glue rules

 Parse input sentence using the source side, and construct a translation forest by target side

Synchronous-CFG: Parsing

- Translation by SCFG = monolingual parsing using the source side grammar
- Construct forest by the projected target side
- From forests, compute the best derivation (Huang and Chiang, 2005)
- Complexity: O(n³) as in monolingual CKY

 non-local features which requires out-of-span context, i.e. bigram LM

• We keep only bigram states: (Why 2 words?)

Language Model Updates

- Each hypothesis keeps two contexts:
 - Prefix: ngrams to be scored with antecedents
 - Suffix: contexts for future ngrams (i.e. Phrasebased MT)
- Complexity: $O(n^3V^{2(m-1)})$
- Very inefficient: we need to explicitly enumerate all the hypotheses in antecedents

Forest Rescoring

- Translation by SCFG = monolingual parsing using the source side grammar
- Construct forest by the projected target side + Rescore with non-local features
- From forests, compute the best derivation (Huang and Chiang, 2005)
- Complexity: O(n³) as in monolingual CKY

2.6 3.2 1.7 1.5 a * talk 1.0 2.5 4.2 2.7 3.6 talks 2.8 1.3 3.9 3.0 4.5 3.9 meeting 4.8 5.4 2.2 3.7 meetings 2.6 **4**. I 4.3 5.2 5.8

 For each hyperedge, create a "cube" representing combinations of antecedents (Huang and Chiang, 2007)

 Bigrams require contexts from antecedents: non-monotonic scoring

queue: (1,0) k-best: (0,0)(0,1)

- queue: (1,1)(3,0),..., (0,0)(0,1)(1,0)(0,2),..., (1,0)(0,2)</
 - talks
 I.3
 3.1
 4.5

 meeting
 2.2
 4.2

 meetings
 2.6
 - Starting from the upper-left corner, enumerate antecedent combinations

queue: (0,4)(1,1)(1,2)(3,0)k-best: (0,0)(0,1)(1,0)(0,2)^{sharon} * sharon * with 1.5 1.7 2.6 3.2

					••-
a * talk	1.0	3.0	3.7	5.I	
talks	Ι.3	3.1	4.5		
meeting	2.2	4.2	4.9		
meetings	2.6	4.4			

- Multiple rules sharing the same span are queued
 - Each rule is associated with a cube
 - hypothesis = hyperedge + cube-position

Further Faster Pruning

- Cube Growing (Huang and Chiang, 2007)
 - Top-down pruning combined with heuristic estimates
- Faster Cube Pruning (Gesmundo and Henderson, 2010)
 - Eliminate bookkeeping for inserted hypotheses by determining the ordering of cube enumerations
 - Push minimum hypotheses by looking up ancestors
- Incremental (Huang and Mi, 2010)
 - Top-down decoding as in (Watanabe et al., 2006)

Conclusion

- Synchronous-CFG
 - paired CFG + shared non-terminal symbols
- Training is based on phrase-based MT by treating sub-phrase as a non-terminal
- Decoding: monolingual parsing
 - An efficient antecedent combination via cube-pruning

Tree-based MT

- Backgrounds
 - CFG, parsing, hypergraph, deductive system semirings
- Tree-based SMT
 - Synchronous-CFG
 - String-to-Tree, Tree-to-String

{Tree,String}-to-{Tree,String}

- Each synchronous rule has a subtree structure
- Flat structure + sharing the same non-terminal symbols = synchronous-CFG

Compute "minimum rules" as in phrase-based
 MT

Rule Extraction

 Compute "spans" by propagating alignment in bottom-up

• Compute "complements" in top-down

 Compute "frontiers": The nodes in which the intersection of "spans" and "complements" is empty

• Extract minimum rules using frontiers

Rule Extraction

• Extract minimum rules using frontiers

• Extract minimum rules using frontiers

Rule Extraction

101

- Similar to SCFG decoding: Use the "collapsed" source side rule to perform CKY parsing
- Construct a translation forest using the target side

Decoding: Tree-{String, Tree}

- First, an input sentence is parsed
- Input tree is transformed into a translation forest by tree rewriting

Forest Rescoring

- Translation by {tree,string}-to-{tree,string}
 - string-to-{tree,sting}: parsing using the source-side grammar
 - tree-to-{tree,string}: parse input
 sentences + tree-match-rewrite
- Construct forest by the projected target side
- From forests, compute the best derivation (Huang and Chiang, 2005)

Conclusion

- {String,Tree}-to-{String,Tree} translation models
- Rules extraction by GHKM (Galley et al., 2004)
 - Galley M, Hopkins M, Knight K, Marcu D, 2004
- Decoding:
 - String-to-{String, Tree} by CKY
 - Tree-to-{String,Tree} by tree-rewrite

More on Tree-based Models

- Forest-based approach: instead of 1-best parse, use forest encoding k-bests (Mi and Huang, 2008; Mi et al., 2008)
- "Binarized forest" as an alternative to represent multiple parses (Zhang et al., 2011)
- Fuzzy tree-to-tree as a way to overcome "stricktness" of tree-based models (Chiang, 2010)
- Use of dependency (Mi and Liu, 2010; Xie et al., 2011)

Tree-based MT

- Backgrounds
 - CFG, parsing, hypergraph, deductive system semirings
- Tree-based SMT
 - Synchronous-CFG
 - String-to-Tree, Tree-to-String

Structures in SMT

• Tutorial

- Phrase-based MT
- Tree-based MT
- Syntactic Structures in System Combination

MT System Combination by Confusion Forest

Taro Watanabe and Eiichiro Sumita @ NICT

MT System Combination

- Better translation by combining multiple system outputs:
 - Sentence selection(Nomoto, 2004; etc.)
 - Phrasal combination (Frederking and Nirenburg, 1994; etc.)
 - Word level combination (Bangalore et al., 2001; Matusov et al., 2006; etc.)
- This Work: Syntactic combination, not word-wise combination

Confusion Network

- ★ I same the forestorest I warkliked the blue forestorest I same the greegreeneets the forest threas found forest was found
- State-of-the-art: Confusion Network
- Choose a skeleton, compute word alignment against the skeleton
 - Edit-distance-based alignment (TER etc.) (Sim et al., 2007)
 - Model-based alignment(GIZA++ etc.) (Matsov et al., 2006)

- Construct a network with each arc representing alternative translation
 - Best path = Best translation
 - Syntactically different language pairs: i.e. active/passive voices
 - Spurious insertion/repetition due to alignment error
 - Incremental alignment/construction + merge multiple networks into one (Rosti et al., 2008)

Rule Extraction

- Parse each system output by a parser
- Extract rules from parsed trees: local grammar

Generation by Earley

$$\frac{[\mathbf{X} \to \alpha \bullet x\beta, h] : u}{[\mathbf{X} \to \alpha x \bullet \beta, h] : u}$$

Predict:

Scan:

$$\frac{[\mathbf{X} \to \boldsymbol{\alpha} \bullet \mathbf{Y}\boldsymbol{\beta}, h]}{[\mathbf{Y} \to \bullet \boldsymbol{\gamma}, h+1] : u} \quad \mathbf{Y} \stackrel{u}{\to} \boldsymbol{\gamma} \in \mathcal{G}, h < H$$

Complete:

$$\frac{[\mathbf{X} \to \alpha \bullet \mathbf{Y}\beta, h] : u \quad [\mathbf{Y} \to \gamma \bullet, h+1] : v}{[\mathbf{X} \to \alpha \mathbf{Y} \bullet \beta, h] : u \otimes v}$$

- Generation from the extracted grammar
- Scanning always succeed: constraint by height

- Memorize the (partial) tree structures in each node
- Employ the sequence of Ealrye state as a node
 - Horizontal/Vertical Markovization (Klein and Manning, 2003)

Forest Reranking

$$\hat{d} = \underset{d \in D}{\arg \max} \mathbf{w}^{\top} \cdot \mathbf{h}(d, F)$$

- Choose the best derivation d among all possible derivations D in a forest F
 - Terminal yield of the best derivation = the best translation
 - Approximately apply non-local features (ngram language models) by Cube Pruning (Huang and Chiang, 2007)
 - Efficient k-best by Algorithm 3 (Huang and Chiang, 2005)

Experiments

- WMT10 System Combination Task
 - Czech, German, Spanish, French \rightarrow English
 - tune/test: 455/2,034 sentences

	cz-en	de-en	es-en	fr-en
systems	6	16	8	14
tune	10.6K	I0.9K	10.9K	II.0K
test	50.5K	52.IK	52.IK	52.4K

- CF: Stanford parser + "cicada" (a hypergraph-based toolkit based on SEMIring parsing framework)
- CN: Single network by merging multiple networks + conversion into hypergraph by lattice parsing
- features: tuned by hypergraph-MERT(Kumar et al. 2009)
 - Language Models, # of terminals, # of hyperedges
 - # of rules in a derivation originally in n_{th} system output
 - BLEUs by treating each system output as a reference translation
 - Network distance (only used for CN)

BLEU

	cz-en	de-en	es-en	fr-en
system min	14.09	15.62	21.79	16.79
max	23.44	24.10	29.97	29.17
CN	23.70	24.09	30.45	29.15
CF,v=∞,h=∞	24.13	24.18	30.4 <i>1</i>	29.57
CF,v=∞,h=2	24.14	24.58	30.52	28.84
CF,v=∞,h=I	24.0 <i>I</i>	23.91	30.46	29.32

Oracle BLEU

	cz-en	de-en	es-en	fr-en
rerank	29.40	32.32	36.83	36.59
CN	38.52	34.97	47.65	46.37
CF,v=∞,h=∞	30.51	34.07	38.69	38.94
CF,v=∞,h=2	30.61	34.25	38.87	39.10
CF,v=∞,h=I	31.09	34.65	39.27	39.51

Hypergraph size

	cz-en	de-en	es-en	fr-en
CN	2,222.68	47,231.20	2,932.24	11,969.40
CF,v=∞,h=I	230.08	540.03	262.30	386.79
CF,v=5,h=1	254.45	651.10	302.01	477.51
CF,v=4,h=1	286.01	802.79	349.21	575.17

- Average # of hyperedges
- (rough) estimates for speed

Conclusion

- System combination by Confusion Forest which employs syntactic distance, not word-level distance
- Forest construction by the grammar extracted from system outputs
 - Parser: assign tree structure to the similar expressions
- Compact date structure + comparable performance against Confusion Network

Structures in SMT

• Tutorial

- Phrase-based MT
- Tree-based MT
- Syntactic Structures in System Combination

Research on MT

- Reading: at least 50 papers are related to MT "every year"
- Specialist: solve a sub-problem
- Language Neutral: a solution which works only for a particular language pair is boring