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Machine Translation

• We learn parameters from data assuming a 
“model”

• Decode by the learned parameters

data

learner

model

decoder

The United Inspection Department 
of Heishantou Port has shortened 
the procedures for leaving and 
entering the territory from originally 
2 - 3 days to 1 day.

黑山头口岸联检部門将原来要二至
三天办完的出入境手续改为一天办
完。



X

Channel Model

Process Y
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Channel Model

• Employed in: ASR, OCR, MT...

+ noise

channelY Xencoder decoder
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ŷ = argmax
y

Pr(y|x)

= argmax
y

Pr(x|y)Pr(y)

Pr(x)

= argmax
y

Pr(x|y)Pr(y)
f = source
e = target ê = argmax

e
Pr(f |e)Pr(e)



Translation Model

• Translation Model: adequacy of translation

• Language Model: grammatical correctness, consistent 
style, fluency

Language ModelTranslation Model

ˆ = Pr( | ) Pr( )

(Brown et al., 1990)
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Language Model

• Likelihood of a string of English words

• Usually modeled by ngrams

Pr(I do not know) = ?

Pr(I not do know) = ?

W = w1, w2, w3, · · ·wN

p(W ) = p(w1, w2, w3, · · · , wN )

= p(w1)p(w2|w1)p(w3|w1, w2) · · ·
p(wN |w1, w2, w3, · · · , wN�1)
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ngram Language Model

• Markov assumption: only n-word history is 
memorized

• Bigram:

• Training: Maximum likelihood estimate + 
smoothing (Good-Turing, Witten-Bell, 
Kneser-Ney etc.)

p(I do not know) = p(I)p(do|I)p(not|do)p(know|not)



Word-based MT

(Brown et al., 1993)



Phrase-based MT

(Koehn et al., 2003)



Hierarchical PBMT

(Chiang, 2007)



Syntax-based MT

(Galley et al., 2004)



Structures in SMT

• Tutorial

• Phrase-based MT 

• Tree-based MT

• Syntactic Structures in System Combination



Why Phrases?

• Use phrases as a unit of translations

• Directly handle many-to-many word 
correspondence + local reordering

• Allow local context + non-compositional phrases

• Employed in many systems, including Google, 
NICT(VoiceTra, TexTra) and open-source, Moses 
(http://www.statmt.org/moses/)
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Phrase-based Model

• Generative story:

• f is segmented into phrases

• Each phrase is translated

• Translated phrases are reordered
14

ウィンドー の 品物 を 見せ て下さい



Phrase-based Model

• Maximization of a log-linear combination of 
multiple feature functions h(e, Φ, f)

• Φ: phrasal partition of f and e

• w: weight of feature functions

ê = argmax
e

exp
�
w� · h(e, �, f)

�
�

e�,�� exp (w� · h(e�, ��, f))

= argmax
e

w� · h(e, �, f)
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Questions

• Training: How to learn phrases and 
parameters (Φ and h)? 

• Decoding (or search): How to find the best 
translation (argmax)? 

• Tuning (or optimization): How to learn the 
scaling of features (w)?
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ê = argmax
e

w� · h(e, �, f)



Training

• Learn phrase pairs from 

• A standard heuristic approach

• Compute word alignment

• Extract phrase pairs

• Score phrases

D = 〈F , E〉
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(Koehn et al., 2003)



Word alignment

(Example from Huang and Chiang, 2007)
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Extract Phrase Pairs

• From word alignment, extract a phrase pair 
consistent with word alignment
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Exhaustive Extraction

• Exhaustively extract phrases from f, e
20



Features from Phrases

• Collect all the phrase pairs from the data

• Maximum likelihood estimates by relative 
frequencies

• Employ scores in two directions

log p�(f̄ |ē) = log
count(ē, f̄)�
f̄ � count(ē, f̄ �)

log p�(ē|f̄) = log
count(ē, f̄)�
ē� count(ē�, f̄)
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Features from Alignment

• Lexical weighing which scores by word translation 
probabilities

• Idea: counts for rare phrase pairs are unreliable

• Smoothing effect by decomposing into word pairs

log plex(f̄ |ē, ā) = log

|ē|�

i

1

| {j|(i, j) � ā} |
�

�(i,j)�ā

t(ei|fj)

log plex(ē|f̄ , ā) = log

|f̄ |�

j

1

| {i|(j, i) � ā} |
�

�(j,i)�ā

t(fj |ei)
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Features for Distortion

• Distance-based distortion modeling

+2

±0

-5

d(f , �, e) = | + 2| + |0| + | � 5| = 7
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Features for Reordering

• Fine grained reordering features:

• Either monotone, swap, discontinuous

log po(o � {m, s, d} |f̄ , ē)

d

m

d
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Other Features

• log of ngram language model(s)

• word count: bias for ngram language model(s)

• phrase count: shorter or longer phrases
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Direct Training

• Instead of word alignment + extraction pipeline, 
directly learn phrase-pairs (Marcu and Wong, 2002)

• Bayesian approach + blocked Gibbs sampling to learn 
parameters (Blunsom et al., 2009)

• Exhaustively memorize longer phrases (Neubig et 
al., 2011)
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Questions

• Training: How to learn phrases and 
parameters (Φ and h)? 

• Decoding (or search): How to find the best 
translation (argmax)? 

• Tuning (or optimization): How to learn the 
scaling of features (w)?
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ê = argmax
e

w� · h(e, �, f)



Decoding

• Given an input sentence f and phrasal model h and w, 
seek e with the highest score

• Potential errors:

•  Search error: we cannot find the best scored 
hypothesis

• Translation error: highest scored hypothesis is bad

ê = argmax
e

exp
�
w� · h(e, �, f)

�
�

e�,�� exp (w� · h(e�, ��, f))

= argmax
e

w� · h(e, �, f)
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Enumerate Phrase Pairs

• Given a input sentence f, we can enumerate all 
possible phrases that match with the source side

• Choose the best phrase pair + ordering

bushi yu shalong juxing le huitan

Bush and

with

Sharon

held

held a talk

talkshold

with Sharon

Bush and

talked

meeting
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Phrase-based Search Space

• Node: bit-vector representing covered source words

• Edge: phrasal translations, strictly left-to-right

• Search space: O(2n),Time: O(2nn2) (Why?)

bushi yu shalong juxing le huitan

------

Bush held a talk

Sharon

●----- ●--●●●

●-●●●●

with
●●-●●●

Sharon
--●---

held
--●●●-

and

talks
--●●●● Bush
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Traveling Salesman Problem
• NP-hard problem: visit each city only once

• MT as a Traveling Salesman Problem (Knight, 1999)

• Each source word corresponds to a city

• A Dynamic Programming solution:

• State: visited cities (bit-vector)

• Search space: O(2n)

• Distortion limit to reduce search space

●----- ●----●i.e. long distortion:
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Non-local features

• Features that requires scoring out of phrases: bigram 
language model

• Additional state representation required for “future 
scoring”: 1-word for bigram LM

• Space: O(2n Vm-1), Time: O(2nVm-1n2) for m-gram LM

------:<s>

Bush
held a talk

●-----:Bush ●--●●●:talk

Sharon
--●---:Sharon held --●●●-:held

●--●●-:held
held

p(&YWL|�W�)

p(LIPH|&YWL)

p(7LEVSR|�W�)
p(LIPH|7LEVSR)

p(LIPH|&YWL)p(E|LIPH)p(XEPO|E)
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Phrase-based Decoding

• Re-organize the search space by the cardinality (= # 
of covered source words)

• Expand hypotheses from the smallest cardinality first

------

●-----

●--●●●--●---

--●●●-

●--●●-

-----●
-----●

---●-- --●--●

●----●
●--●--

--●--●
●----●

--●●●-

--●●-●

●--●-● ●--●●●
●-●-●●
●-●●●-
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Pruning

• Prune hypotheses in a bin sharing the same 
cardinality

• Expand survived hypotheses only

------

●-----

●--●●●--●---

--●●●-

●--●●-

-----●
-----●

---●-- --●--●

●----●
●--●--

--●--●
●----●

--●●●-

--●●-●

●--●-● ●--●●●
●-●-●●
●-●●●-
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Questions

• Training: How to learn phrases and 
parameters (Φ and h)? 

• Decoding (or search): How to find the best 
translation (argmax)? 

• Tuning (or optimization): How to learn the 
scaling of features (w)?

35

ê = argmax
e

w� · h(e, �, f)



Tuning

• Three popular objectives (in SMT) for tuning w

• (Direct) Error Minimization (Och, 2003)

• Maximum Entropy (Och and Ney, 2002)

• Large Margin (Watanabe et al., 2007; Chiang 
et al., 2008; Hopkins and May, 2011)

ê = argmax
e

exp
�
w� · h(e, �, f)

�
�

e�,�� exp (w� · h(e�, ��, f))

= argmax
e

w� · h(e, �, f)
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(Direct) Minimum Error

• MERT (Minimum ERror Training)

• Standard in SMT (but not in other NLP areas, such 
as tagging etc.)

• We can incorporate arbitrary error functions, l

• “Summation” can be replaced by document-wise 
BLEU specific summation

• 10+ real valued features

ŵ = argmin
w

S∑

s=1

l(argmax
e

w! · h(e, fs), es)
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n-best Approximation

• N iterations, with each iteration, n-bests are 
generated and merged

• K iterations, with each iteration, M dimensions are 
tried (M = # of features), and w is updated

1: procedure MERT({(es, fs)}S
s=1)

2: for n = 1...N do
3: Decode and generate nbest list using w
4: Merge nbest list
5: for k = 1...K do
6: for each parameter m = 1...M do
7: Solve one dimensional optimization
8: end for
9: update w

10: end for
11: end for
12: end procedure
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Efficient Line Search

• If we choose one dimension m, and others fixed, 
we can treat each hypothesis e as a “line”

• Compute convex hull of a set of “lines”

wm

sc
or

e

wm

er
ro

r
ê = argmax

e
w!

m · hm(e, fs)︸ ︷︷ ︸
slope

+w!
m · hm (e, fs)︸ ︷︷ ︸

constant
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Error Surface
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Figure 1: Shape of error count and smoothed error count for two different model parameters. These curves
have been computed on the development corpus (see Section 7, Table 1) using alternatives per source
sentence. The smoothed error count has been computed with a smoothing parameter .

and try to find a better scoring point in the param-
eter space by making a one-dimensional line min-
imization along the directions given by optimizing
one parameter while keeping all other parameters
fixed. To avoid finding a poor local optimum, we
start from different initial parameter values. A major
problem with the standard approach is the fact that
grid-based line optimization is hard to adjust such
that both good performance and efficient search are
guaranteed. If a fine-grained grid is used then the
algorithm is slow. If a large grid is used then the
optimal solution might be missed.

In the following, we describe a new algorithm for
efficient line optimization of the unsmoothed error
count (Eq. 5) using a log-linear model (Eq. 3) which
is guaranteed to find the optimal solution. The new
algorithm is much faster and more stable than the
grid-based line optimization method.

Computing the most probable sentence out of a
set of candidate translation (see
Eq. 6) along a line with parameter
results in an optimization problem of the following

functional form:

(8)

Here, and are constants with respect to .
Hence, every candidate translation in corresponds
to a line. The function

(9)

is piecewise linear (Papineni, 1999). This allows us
to compute an efficient exhaustive representation of
that function.
In the following, we sketch the new algorithm

to optimize Eq. 5: We compute the ordered se-
quence of linear intervals constituting for ev-
ery sentence together with the incremental change
in error count from the previous to the next inter-
val. Hence, we obtain for every sentence a se-
quence which denote the
interval boundaries and a corresponding sequence
for the change in error count involved at the corre-
sponding interval boundary .
Here, denotes the change in the error count at

(Och, 2003)



MERT in Practice
• Many random starting points (Macherey et al., 2008; 

Moore and Quirk, 2008)

• Many random directions (Macherey et al., 2008)

• Error count smoothing (Cer et al., 2008)

• Regularization (Hayashi et al., 2009)

• Multi-dimensional search by efficiently computing 
convex hull (Galley and Quirk, 2011)

• MERT at least 3 times, and report average BLEU 
(Clark et al., 2011)
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Maximum Entropy

• Minimize the negative log-likelihood of generating 
good translations (Och and Ney, 2002) 

• ORACLE is a subset of GEN, a set of hypotheses 
with minimum loss

• Optimized by L-BFGS or SGD

• Potentially large # of features as in NLP tasks

ŵ = argmin
w

λ

2
||w||2 −

S∑

s=1

log

∑

e∗∈ORACLE(fs)

exp
(
w" · h(e∗, fs)

)

∑

e′∈GEN(fs)

exp
(
w" · h(e′, fs)

)
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Why Not MaxEnt?

• In Och and Ney (2002), they used

• WER to select oracle translations

• n-best merging approach to approximate 
summation as in MERT

Table 3: Effect of different error criteria used in training on the test corpus. Note that better results corre-
spond to larger BLEU and NIST scores and to smaller error rates. Italic numbers refer to results for which
the difference to the best result (indicated in bold) is not statistically significant.

error criterion used in training mWER [%] mPER [%] BLEU [%] NIST # words
confidence intervals +/- 2.7 +/- 1.9 +/- 0.8 +/- 0.12 -

MMI 68.0 51.0 11.3 5.76 21933
mWER 68.3 50.2 13.5 6.28 22914

smoothed-mWER 68.2 50.2 13.2 6.27 22902
mPER 70.2 49.8 15.2 6.71 24399

smoothed-mPER 70.0 49.7 15.2 6.69 24198
BLEU 76.1 53.2 17.2 6.66 28002
NIST 73.3 51.5 16.4 6.80 26602

recognition community (Duda and Hart, 1973;
Juang et al., 1995; Schlüter and Ney, 2001).
Paciorek and Rosenfeld (2000) use minimum clas-
sification error training for optimizing parameters
of a whole-sentence maximum entropy language
model.
A technically very different approach that has a

similar goal is the minimum Bayes risk approach, in
which an optimal decision rule with respect to an
application specific risk/loss function is used, which
will normally differ from Eq. 3. The loss function is
either identical or closely related to the final evalua-
tion criterion. In contrast to the approach presented
in this paper, the training criterion and the statisti-
cal models used remain unchanged in the minimum
Bayes risk approach. In the field of natural language
processing this approach has been applied for exam-
ple in parsing (Goodman, 1996) and word alignment
(Kumar and Byrne, 2002).

9 Conclusions

We presented alternative training criteria for log-
linear statistical machine translation models which
are directly related to translation quality: an un-
smoothed error count and a smoothed error count
on a development corpus. For the unsmoothed er-
ror count, we presented a new line optimization al-
gorithm which can efficiently find the optimal solu-
tion along a line. We showed that this approach ob-
tains significantly better results than using the MMI
training criterion (with our method to define pseudo-
references) and that optimizing error rate as part of
the training criterion helps to obtain better error rate

on unseen test data. As a result, we expect that ac-
tual ’true’ translation quality is improved, as previ-
ous work has shown that for some evaluation cri-
teria there is a correlation with human subjective
evaluation of fluency and adequacy (Papineni et al.,
2001; Doddington, 2002). However, the different
evaluation criteria yield quite different results on our
Chinese–English translation task and therefore we
expect that not all of them correlate equally well to
human translation quality.
The following important questions should be an-

swered in the future:

How many parameters can be reliably esti-
mated using unsmoothed minimum error rate
criteria using a given development corpus size?
We expect that directly optimizing error rate for
many more parameters would lead to serious
overfitting problems. Is it possible to optimize
more parameters using the smoothed error rate
criterion?

Which error rate should be optimized during
training? This relates to the important question
of which automatic evaluation measure is opti-
mally correlated to human assessment of trans-
lation quality.

Note, that this approach can be applied to any
evaluation criterion. Hence, if an improved auto-
matic evaluation criterion is developed that has an
even better correlation with human judgments than
BLEU and NIST, we can plug this alternative cri-
terion directly into the training procedure and opti-
mize the model parameters for it. This means that
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Large Margin

• Structured output learning approach

• Very hard to enumerate all possible e’ and oracle 
translations e*

• Solution: online learning or n-best approximation

w� · h(e�
s, fs) � w� · h(e�

s, fs) � l(e�
s, e

�
s) � �s,e�

s ,e�
s

e�
s � ORACLE(fs)

e�
s � GEN(fs)

ŵ = argmin
w

λ

2
||w||2 +

S∑

s=1

∑

e∗
s

∑

e′
s

ξs,e∗
s ,e

′
s
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Online Learning

• Averaged perceptron (Liang et al., 2006)

• Scale to large data, but each iteration requires 
decoding + weight update

Require: {(fs, es)}S
s=1

1: w1 = {0}
2: t = 1
3: for 1...N do
4: s � random(1, S)
5: ê � GEN(fs,wt�1)
6: if l(ê, es) � 0 then
7: wt+1 = wt + h(es, fs) � h(ê, fs)
8: t = t + 1
9: end if

10: end for
11: return wt or 1

N

�N
i=1 wj
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Online Large Margin

• line 7 is replaced by the solution of the above 
equation

• Still, requires decoding + update in each iteration

• Hard to determine when to stop (watch another 
dev data)

ŵ = argmin
w′

λ

2
||w′ −w||2 +max

(
ls −w′" ·∆hs

)

ês = argmax
e

w� · h(e, fs)

ls = l(ês) � l(e�
s)

�hs = h(ês, fs) � h(e�, fs)
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Ranking Approach

• An n-best approximation approach (Hopkins and 
May, 2011)

• Pair-wise comparison of all the hypotheses

• logistic-loss (or 0-1 loss): use an off-the-shelf binary 
classifier

ŵ = argmin
w

λ

2
||w||2 +

S∑

s=1

∑

e′′
s

∑

e′
s

ξs,e′′
s ,e

′
s

� log
�
1 + exp(�w� · �he��

s ,e�
s
)
�

� ��s,e��
s ,e�

s

e��
s , e�

s � GEN(fs)

l(e�
s, e

��
s ) > 0

�he��
s ,e�

s
= h(e��

s , fs) � h(e�
s, fs)
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Results

• Reranking is competitive to MERT and MIRA, 
and scales to large # of features
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Figure 5: Comparison of MERT, PRO, and MIRA on tuning Urdu-English SBMT systems, and test results at every
iteration. PRO performs comparably to MERT and MIRA.

We used the following feature classes in PBMT
extended scenarios only:

• Unigram word pair features for the 80 most fre-
quent words in both languages plus tokens for
unaligned and all other words (cf. Watanabe et
al. (2007), Section 3.2.1)11

• Source, target, and joint phrase length fea-
tures from 1 to 7, e.g. “tgt=4”, “src=2”, and
“src/tgt=2,4”

The feature classes and number of features used
within those classes for each language pair are sum-
marized in Table 3.

5.4 Tuning settings
Each of the three approaches we compare in this
study has various details associated with it that may
prove useful to those wishing to reproduce our re-
sults. We list choices made for the various tuning
methods here, and note that all our decisions were
made in keeping with best practices for each algo-
rithm.

5.4.1 MERT
We used David Chiang’s CMERT implementation

of MERT that is available with the Moses system
(Koehn et al., 2007). We ran MERT for up to 30 it-
erations, using k = 1500, and stopping early when

11This constitutes 6,723 features in principle (822 � 1 since
“unaligned-unaligned” is not considered) but in practice far
fewer co-occurrences were seen. Table 3 shows the number of
actual unigram word pair features observed in data.

the accumulated k-best list does not change in an it-
eration. In every tuning iteration we ran MERT once
with weights initialized to the last iteration’s chosen
weight set and 19 times with random weights, and
chose the the best of the 20 ending points according
to G on the development set. The G we optimize
is tokenized, lower-cased 4-gram BLEU (Papineni et
al., 2002).

5.4.2 MIRA
We for the most part follow the MIRA algorithm

for machine translation as described by Chiang et al.
(2009)12 but instead of using the 10-best of each of
the best hw, hw +g, and hw-g, we use the 30-best
according to hw.13 We use the same sentence-level
BLEU calculated in the context of previous 1-best
translations as Chiang et al. (2008b; 2009). We ran
MIRA for 30 iterations.

5.4.3 PRO
We used the MegaM classifier and sampled as de-

scribed in Section 4.2. As previously noted, we used
BLEU+1 (Lin and Och, 2004) for g. MegaM was
easy to set up and ran fairly quickly, however any
linear binary classifier that operates on real-valued
features can be used, and in fact we obtained simi-

12and acknowledge the use of David Chiang’s code
13This is a more realistic scenario for would-be implementers

of MIRA, as obtaining the so-called “hope” and “fear” transla-
tions from the lattice or forest is significantly more complicated
than simply obtaining a k-best list. Other tests comparing these
methods have shown between 0.1 to 0.3 BLEU drop using 30-
best hw on Chinese-English (Wang, 2011).
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Answered?

• Grammar-less model (but very strong)

• Fast decoding

• Why MERT? (Good for non-binary, numerical 
features)
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Structures in SMT

• Tutorial

• Phrase-based MT 

• Tree-based MT

• Syntactic Structures in System Combination



Tree-based MT

• Backgrounds

• CFG, parsing, hypergraph, deductive 
system semirings

• Tree-based SMT

• Synchronous-CFG

• String-to-Tree, Tree-to-String
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Backgrounds: CFG

• parsing = intersection of CFG with a string 
(regular grammar)

S � NP VP

NP � NNP

NP � NP PP

NP � DP NN

NP � DT NN

VP � VBD NP

NNP � Bush

VBD � held
...
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Parsing: CKY

• O(n3) : For each length n, for each position i, 
for each rule X → Y Z, for each split point k

• (Bottom-up) topological order

2,4 4,6

2,6

2,4 4,6

2,6

2,4 4,6

2,6

i,k k,j

i,j

i,k k,j

i,j

X � Y Z
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Hypergraph

• Generalization of graphs:

• h(e): head node of hyperedge e

• T(e): tail node(s) of hyperedge e, arity = |T(e)|

• hyperedge = instantiated rule

• Represented as and-or graphs

0,6

0,1

0,1

1,6

1,2 2,6

e = � 1,6� �� �
h(e)

, { 1,2, 2,6}� �� �
T (e)

�

1,6

�

1,2 2,6

(Klein and Manning, 2001)
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Deductive System

• Parsing algorithm as a deductive system

•  We start from initial items (axioms) until we 
reach a goal item

• If antecedents are proved, its consequent is proved

• deduction = hyperedge

.
.

..VP1,6

.
.

.
.

.
..VBD1,2 .

..NP2,6

antecedents︷ ︸︸ ︷
VBD1,2 NP2,6

VP1,6︸ ︷︷ ︸
consequent

VP[i,j] → VBZ[j,k] NP[i,k]

(Shieber et al., 1995)
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Packed Forest

• A polynomial space encoding of exponentially 
many parses by sharing common sub-derivations

• Single derivation = tree

(Klein and Manning, 2001; Huang and Chiang, 2005)

VBD1,2
NP2,4 PP4,6

NP2,6

VP1,6

VBD1,2 NP2,4 PP4,6

VP1,6

1,6

1,2 2,6

2,4 4,6

1,6

1,2 2,6

2,4 4,6
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Summary of Formalisms
hypergraph AND/OR 

graph
CFG deductive 

system
vertex OR-node symbol item

source-vertex leaf OR-node terminal axiom

target-vertex root OR-node start symbol goal item

hyperedge AND-node production instantiated 
deduction

〈v, {u1, u2}〉 v → u1 u2
u1 u2

v
v

�

u1 u2
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Weights and Semirings

• Associate weights as in WFST

• ⊗ : extension (multiplicative), ⊕ : summary (additive)

58

VP
w1� VBD NP

NP
w2� NP PP

.

.

..NP2,6 : w2 � a � b

.
.

.
.

.
..NP2,4 : a

.
..PP4,6 : b

NP2,4 : a PP4,6 : b

NP2,6 : w2 ⊗ a⊗ b
: w2

.

.

..VP1,6 : w1 � c � d

.
.

.
.

.
..VBD1,2 : c

.
..NP2,6 : d

VBD1,2 : c NP2,6 : d

VP1,6 : w1 ⊗ c⊗ d
: w1



• The weight of a hyperedge is dependent on antecedents 
(non-monotonic)

• The weight of a derivation is the product of hyperedge 
weights

• The weight of a vertex is the summary of 
(sub-)derivation weights

v

u1 u2
u3 u4

e1 e2

d(v) = (w(e1, u1, u2)⇥ d(u1)⇥ d(u2))

� (w(e2, u3, u4)⇥ d(u3)⇥ d(u4))

Weights and Semirings
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Semirings

60

semiring K ⊕ ⊗ 0 1
Viterbi [0,1] max × 0 1

Real R + x 0 1

Log R logsumexp + +∞ 0

Tropical R min + +∞ 0

Expectation <P,R>
<p1⊕p2, 
r1⊕r2>

<p1⊗p2, 
p1⊗r2⊕p2⊗r1>

<0,0> <1,0>

K = �K, �, �,0,1�



Conclusion

• Review important concepts from “parsing”

• CFG, parsing, hypergraph, deductive 
system, weights, semirings
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Tree-based MT

• Backgrounds

• CFG, parsing, hypergraph, deductive 
system semirings

• Tree-based SMT

• Synchronous-CFG

• String-to-Tree, Tree-to-String
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Synchronous-CFG

• D: a single derivation constructed by intersecting 
SCFG with input string

ê = argmax
e

exp
�
w� · h(e, D, f)

�
�

e�,D� exp (w� · h(e�, D�, f))

= argmax
e

w� · h(e, D, f)

1

2

を⅏

3

4

㼨爨

嫛 5

ℕ↩店

1

2 3

5 4

1

2

を⅏

3

4

㼨爨

嫛 5

ℕ↩店

1

2 3

5 4

1

2

を⅏

3

4

㼨爨

嫛 5

ℕ↩店

1

2 3

5 4

1

2

を⅏

3

4

㼨爨

嫛 5

ℕ↩店

1

2 3

5 4

1

2

を⅏

3

4

㼨爨

嫛 5

ℕ↩店

1

2 3

5 4

1

2

を⅏

3

4

㼨爨

嫛 5

ℕ↩店

1

2 3

5 4
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Synchronous-CFG: Model

• We use two categories, S and X (Chiang, 2007)

• Or, borrow linguistic categories from syntactic parse 
(Zollman and Venugopal, 2006)

VP �
�
VBD 1 NP 2 , NP 2 VBD 1

�

NP �
�
NP 1 PP 2 , NP 1 PP 2

�

VP �
�
VBD 1 NP 2 PP 3 , NP 2 PP 3 VBD 1

�

�
�

1 2 , 1 2

�

�
�

1 , 1

�

�
�

1 嫛 2 , 2 1

�

�
�
㼨爨,

�
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Rule Extraction

• As in phrase-based models, extract phrases then, use 
sub-phrases as non-terminals, aka Hiero (Chiang, 2007)

を⅏  㼨爨嫛 ℕ ↩店

(Example from Huang and Chiang, 2007)

�
�

1 2 ℕ↩店, 2 1

�

〈
, 嫛

〉

〈 ,
㼨爨嫛ℕ↩店

〉

〈
,㼨爨

〉
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Syntactic Categories

• Borrow syntactic categories either from source/
target side, aka SAMT(Zollman and Venugopal, 2006)

を⅏  㼨爨嫛 ℕ ↩店

PP

VP
VBD

NP

〈 ,
㼨爨嫛ℕ↩店

〉

〈
, 嫛

〉

〈
,㼨爨

〉

VP →VBD a talk PP, PP VBD 了 会谈

VBD+NP

66



Exhaustive Extraction

• Exhaustively extract rules as in phrase-based MT

• + glue rules

を⅏  㼨爨嫛 ℕ ↩店
1 2 ℕ↩店 2 1

1 2 ↩店 2 1

1 2 ↩店 2 1

1 嫛 2 2 1

1 嫛ℕ 2 2 1

㼨爨 1 1

 1 2 2 1

�
�

1 2 , 1 2

�

�
�

1 , 1

�
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Features from Rules

• Collect all the rules (α, β) from the data:

• α = source side string, β = target side string

• Maximum likelihood estimates by relative frequencies

• Employ scores in two directions

log pr(�̄|�̄) = log
count(�̄, �̄)�
�̄� count(�̄, �̄�)

log pr(�̄|�̄) = log
count(�̄, �̄)�
�̄� count(�̄�, �̄)
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Remarks on Rules
• Too many rules extracted (Chiang, 2007):

• at most two non-terminal symbols

• at least one terminal between non-terminals in 
the source side

• Span at most 15 words for “holes”

• Fractional counts (Chiang, 2007):

• Each phrases counted in phrase-based MT

• Fractional counts for rules sharing the same 
source/target span
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Other Features

• Lexical weights as used in phrase-based MT

• ngram language model(s)

• word count: bias for ngram language model(s)

• rule count: shorter or longer phrases

• glue-rule counts: bias for monotonic glue rules
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Synchronous-CFG: Parsing

• Parse input sentence using the source side, and 
construct a translation forest by target side

bushi

yu shalong

juxing

le huitan

X4,6

X1,6

X0,6

X3,4

Bush
with Sharon

talks

X0,1 X1,3

� � 1 2 ,

2 1 �

X3,4 X1,3

hold

X4,6X0,1

X1,6

held
a talk

X0,6

� � 1 2 ,

2 1 �
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Synchronous-CFG: Parsing

• Translation by SCFG = monolingual parsing 
using the source side grammar

• Construct forest by the projected target 
side

• From forests, compute the best derivation 
(Huang and Chiang, 2005)

• Complexity: O(n3) as in monolingual CKY
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Non-Local Features

• non-local features which requires out-of-span 
context, i.e. bigram LM

X1,6

X1,3X3,4

with Sharon
and Sharon
Sharon with
Sharon and

a talk
talks
meeting
meetings

� � 1 2 ,

2 1 �

held a talk with Sharon
held talks with Sharon
held a talk and Sharon
held meeting Sharon with

p(talk | a) p(Sharon | with)
p(Sharon | and)
p(with | Sharon)
p(and | Sharon)

Update boundary 
words only
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Bigram Features

• We keep only bigram states: (Why 2 words?)

X1,6

X1,3X3,4

with * Sharon
and * Sharon
Sharon * with
Sharon * and

a * talk
talks
meeting
meetings

� � 1 2 ,

2 1 �

held * Sharon
held * Sharon
held * Sharon
held * with
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Language Model Updates

• Each hypothesis keeps two contexts:

• Prefix: ngrams to be scored with antecedents

• Suffix: contexts for future ngrams (i.e. Phrase-
based MT)

• Complexity: O(n3V2(m-1))

• Very inefficient: we need to explicitly enumerate 
all the hypotheses in antecedents
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Forest Rescoring

• Translation by SCFG = monolingual parsing 
using the source side grammar

• Construct forest by the projected target 
side

• From forests, compute the best derivation 
(Huang and Chiang, 2005)

• Complexity: O(n3) as in monolingual CKY

76

+ Rescore with non-local features



Cube Pruning

• For each hyperedge, create a “cube” representing 
combinations of antecedents (Huang and Chiang, 2007)

� � 1 2 ,

2 1 �

2.5 2.7 3.6 4.2

2.8 3.0 3.9 4.5

3.7 3.9 4.8 5.4

4.1 4.3 5.2 5.8

a * talk

talks

meeting

meetings

with * S
haro

n

and * S
haro

n

Sharo
n * w

ith

Sharo
n * a

nd

1.0

1.3

2.2

2.6

1.5 1.7 2.6 3.2
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Cube Pruning

• Bigrams require contexts from antecedents: 
non-monotonic scoring

� � 1 2 ,

2 1 �

2.5 2.7 3.6 4.2

2.8 3.0 3.9 4.5

3.7 3.9 4.8 5.4

4.1 4.3 5.2 5.8

a * talk

talks

meeting

meetings

with * S
haro

n

and * S
haro

n

Sharo
n * w

ith

Sharo
n * a

nd

1.0

1.3

2.2

2.6

1.5 1.7 2.6 3.2

+0.5

+0.3

+0.5

+0.3

+1.0

+1.5

+1.0

+1.5

+1.5

+2.0

+1.5

+2.0

+1.5

+2.0

+1.5

+2.0
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Cube Pruning

• Starting from the upper-left corner, enumerate 
antecedent combinations

3.0a * talk

talks

meeting

meetings

with * S
haro

n

and * S
haro

n

Sharo
n * w

ith

Sharo
n * a

nd

1.0

1.3

2.2

2.6

1.5 1.7 2.6 3.2

queue:
k-best:

(0,0)
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Cube Pruning

• Starting from the upper-left corner, enumerate 
antecedent combinations

3.0a * talk

talks

meeting

meetings

with * S
haro

n

and * S
haro

n

Sharo
n * w

ith

Sharo
n * a

nd

1.0

1.3

2.2

2.6

1.5 1.7 2.6 3.2

queue:
k-best: (0,0)
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Cube Pruning

• Starting from the upper-left corner, enumerate 
antecedent combinations

3.0 3.7

3.1

a * talk

talks

meeting

meetings

with * S
haro

n

and * S
haro

n

Sharo
n * w

ith

Sharo
n * a

nd

1.0

1.3

2.2

2.6

1.5 1.7 2.6 3.2

queue:
k-best: (0,0)

(0,1)(1,0)
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Cube Pruning

• Starting from the upper-left corner, enumerate 
antecedent combinations

3.0 3.7

3.1

a * talk

talks

meeting

meetings

with * S
haro

n

and * S
haro

n

Sharo
n * w

ith

Sharo
n * a

nd

1.0

1.3

2.2

2.6

1.5 1.7 2.6 3.2

queue:
k-best: (0,0)(0,1)

(1,0)
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Cube Pruning

• Starting from the upper-left corner, enumerate 
antecedent combinations

3.0 3.7

3.1 4.5

4.2

a * talk

talks

meeting

meetings

with * S
haro

n

and * S
haro

n

Sharo
n * w

ith

Sharo
n * a

nd

1.0

1.3

2.2

2.6

1.5 1.7 2.6 3.2

queue:
k-best: (0,0)(0,1)

(1,0)(0,2) (1,1)
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Cube Pruning

• Starting from the upper-left corner, enumerate 
antecedent combinations

3.0 3.7

3.1 4.5

4.2

a * talk

talks

meeting

meetings

with * S
haro

n

and * S
haro

n

Sharo
n * w

ith

Sharo
n * a

nd

1.0

1.3

2.2

2.6

1.5 1.7 2.6 3.2

queue:
k-best: (0,0)(0,1) (1,0)

(0,2) (1,1)
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Cube Pruning

• Starting from the upper-left corner, enumerate 
antecedent combinations

3.0 3.7 5.1

3.1 4.5

4.2

a * talk

talks

meeting

meetings

with * S
haro

n

and * S
haro

n

Sharo
n * w

ith

Sharo
n * a

nd

1.0

1.3

2.2

2.6

1.5 1.7 2.6 3.2

queue:
k-best: (0,0)(0,1) (1,0)

(0,2) (1,1)(3,0)
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Cube Pruning

• Starting from the upper-left corner, enumerate 
antecedent combinations

3.0 3.7 5.1

3.1 4.5

4.2

a * talk

talks

meeting

meetings

with * S
haro

n

and * S
haro

n

Sharo
n * w

ith

Sharo
n * a

nd

1.0

1.3

2.2

2.6

1.5 1.7 2.6 3.2

queue:
k-best: (0,0)(0,1) (1,0) (0,2)

(1,1)(3,0)
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Cube Pruning

• Starting from the upper-left corner, enumerate 
antecedent combinations

3.0 3.7 5.1

3.1 4.5

4.2 4.9

4.4

a * talk

talks

meeting

meetings

with * S
haro

n

and * S
haro

n

Sharo
n * w

ith

Sharo
n * a

nd

1.0

1.3

2.2

2.6

1.5 1.7 2.6 3.2

queue:
k-best: (0,0)(0,1) (1,0) (0,2)

(1,1) (3,0)(0,4) (1,2)
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Multiple Rules

• Multiple rules sharing the same span are queued

• Each rule is associated with a cube

• hypothesis = hyperedge + cube-position

X4,6 X1,3
X3,4

X1,6

a talk
held
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Further Faster Pruning
• Cube Growing (Huang and Chiang, 2007)

• Top-down pruning combined with heuristic 
estimates

• Faster Cube Pruning (Gesmundo and Henderson, 
2010)

• Eliminate bookkeeping for inserted hypotheses by 
determining the ordering of cube enumerations

• Push minimum hypotheses by looking up ancestors

• Incremental (Huang and Mi, 2010)

• Top-down decoding as in (Watanabe et al., 2006)



Conclusion

• Synchronous-CFG

• paired CFG + shared non-terminal symbols

• Training is based on phrase-based MT by 
treating sub-phrase as a non-terminal

• Decoding: monolingual parsing

• An efficient antecedent combination via 
cube-pruning
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Tree-based MT

• Backgrounds

• CFG, parsing, hypergraph, deductive 
system semirings

• Tree-based SMT

• Synchronous-CFG

• String-to-Tree, Tree-to-String
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{Tree,String}-to-{Tree,String}

x1

x2 x3

x5

x6

x4

x7

x1

x2 x3

x5

x6

x4

x7

x1

x2 x3

x5

x6

x4

x7

x1

x2 x3

x5

x6

x4

x7

x1

x2 x3

x5

x6

x4

x7

x1

x2 x3

x5

x6

x4

x7

• Each synchronous rule has a subtree structure

• Flat structure + sharing the same non-terminal 
symbols = synchronous-CFG

x1

x2 x3

x5

x6

x4

x7
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Tree-to-String Rules

x1

� x1�

x1

� x1

x1

� x1

x1

x2 x3

� x1 x3 x2

x1

x2

� x2 x193



ルールの抽出

• Compute “minimum rules” as in phrase-based 
MT

(Galley et al., 2004)
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Rule Extraction

• Compute “spans” by propagating alignment in 
bottom-up

(0)

(4) (5) (1) (1) (3)

(4,5) (1,3)

(1,3,4,5)

(0,1,3,4,5)

(Galley et al., 2004)
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Rule Extraction

• Compute “complements” in top-down

(0)

(4) (5) (1) (1) (3)

(4,5) (1,3)

(1,3,4,5)

(0,1,3,4,5)()

(1,3,4,5) (0)

(0,4,5)(0,1,3)

(0,1,3,4)
(0,1,3,5) (0,1,4,5)

(0,1,3,4,5)(0,1,3,4,5)
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Rule Extraction

• Compute “frontiers”: The nodes in which  the 
intersection of “spans” and “complements” is empty

(0)

(4) (5) (1) (1) (3)

(4,5) (1,3)

(1,3,4,5)

(0,1,3,4,5)()

(1,3,4,5) (0)

(0,4,5)(0,1,3)

(0,1,3,4)
(0,1,3,5) (0,1,4,5)

(0,1,3,4,5)(0,1,3,4,5)
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Rule Extraction

• Extract minimum rules using frontiers

x1 x1

� x2 x1
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Rule Extraction

• Extract minimum rules using frontiers

�
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Rule Extraction

• Extract minimum rules using frontiers

x1

� x1
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Rule Extraction

• Extract “compound rules” by combining 
minimum rules (i.e. longer phrases)

(Galley et al., 2006)

x1

x2

� x2 x1
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Decoding: String-{String,Tree}

• Similar to SCFG decoding: Use the “collapsed” 
source side rule to perform CKY parsing

• Construct a translation forest using the target side

x1

� x1

x1

x2

� x2 x1

〈 → 1,
x → x1〉

〈 → 1 2,
x → x2 x1〉
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Decoding: Tree-{String,Tree}

• First, an input sentence is parsed

• Input tree is transformed into a translation forest by 
tree rewriting

x1

x2 x3

x5

x6

x4

x7

x1

x2 x3

x5

x6

x4

x7

x1

x2 x3

x5

x6

x4

x7

x1

x2 x3

x5

x6

x4

x7

x1

x2 x3

x5

x6

x4

x7

x1

x2 x3

x5

x6

x4

x7

x1

x2 x3

x5

x6

x4

x7

x1

x2 x3

x5

x6

x4

x7
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Forest Rescoring
• Translation by {tree,string}-to-{tree,string}

• string-to-{tree,sting}: parsing using the 
source-side grammar

• tree-to-{tree,string}: parse input 
sentences + tree-match-rewrite

• Construct forest by the projected target 
side

• From forests, compute the best derivation 
(Huang and Chiang, 2005)
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Conclusion

• {String,Tree}-to-{String,Tree} translation models

• Rules extraction by GHKM (Galley et al., 2004)

• Galley M, Hopkins M, Knight K, Marcu D, 2004

• Decoding:

• String-to-{String, Tree} by CKY

• Tree-to-{String,Tree} by tree-rewrite
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More on Tree-based Models
• Forest-based approach: instead of 1-best parse, use 

forest encoding k-bests (Mi and Huang, 2008; Mi et 
al., 2008)

• “Binarized forest” as an alternative to represent 
multiple parses (Zhang et al., 2011) 

• Fuzzy tree-to-tree as a way to overcome 
“stricktness” of tree-based models (Chiang, 2010)

• Use of dependency (Mi and Liu, 2010; Xie et al., 2011)
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Tree-based MT

• Backgrounds

• CFG, parsing, hypergraph, deductive 
system semirings

• Tree-based SMT

• Synchronous-CFG

• String-to-Tree, Tree-to-String
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Structures in SMT

• Tutorial

• Phrase-based MT 

• Tree-based MT

• Syntactic Structures in System Combination



MT System Combination by 
Confusion Forest

Taro Watanabe and Eiichiro Sumita
@ NICT



MT System Combination
• Better translation by combining multiple system 

outputs:

• Sentence selection(Nomoto, 2004; etc.)

• Phrasal combination (Frederking and Nirenburg, 
1994; etc.)

• Word level combination (Bangalore et al., 2001; 
Matusov et al., 2006; etc.)

• This Work: Syntactic combination, not word-wise 
combination



.

.

..I ..saw ..the ..forest . ..

..I ..walked ..the ..blue ..forest ..

..I ..saw ..the ..green ..trees ..

..the ..forest ..was ..found . ..

Confusion Network

• State-of-the-art: Confusion Network

• Choose a skeleton, compute word alignment against the 
skeleton

• Edit-distance-based alignment (TER etc.) (Sim et al., 2007)

• Model-based alignment(GIZA++ etc.) (Matsov et al., 
2006)

.

.

..I ..saw ..the . ..forest . .

..I ..walked ..the ..blue ..forest . .

..I ..saw ..the . ..green ..trees .

.. . ..the . ..forest ..was ..found

★



Confusion Network

• Construct a network with each arc representing alternative 
translation

• Best path = Best translation

• Syntactically different language pairs: i.e. active/passive voices

• Spurious insertion/repetition due to alignment error

• Incremental alignment/construction + merge multiple 
networks into one (Rosti et al., 2008)

.. . . . . . . .

.I

.�

.saw

.�

.walked

.the
.blue

.�

.forest

.green

.trees

.�
.was

.found

.�



Confusion Forest

.

.

..PRP

. .. ..I .

..NP@1

.

.

.

.

.

..DT

. .. ..the .

..NN

. .. ..forest

.

..VBD@3

. .. ..was

.

..VP@4

.

.

.

..VBN

. .. ..found
.

..VBD@2.1

. .. .. ..walked . ..saw . ..NP@2.2

.

..DT

. .. ..the .

..JJ

. .. .. ..blue . ..green

.

..NN

. .. .. ..forest . ..trees

.

..DT@2.2.1

. .. ..the .

..NN@2.2.2

. .. ..forest

. ..VP@2

. ..S@�

• Compactly represent multiple 
parses by sharing nodes

• Represented by “hypergraph”

e2
e1

e1 = � 2,
�

3, 4
⇥
⇥

e2 = � 2,
�

2.1, 2.2
⇥
⇥



Rule Extraction

• Parse each system output by a parser 

• Extract rules from parsed trees: local grammar

.

.
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.

.

.

.

.

..NP

.
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..PRP

. .. ..I

.

..VP
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.

..S ..� ..NP ..VP

..NP ..� ..PRP
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Generation by Earley

• Generation from the extracted grammar

• Scanning always succeed: constraint by height

Scan:
[X ⇥ � • x⇥, h] : u
[X ⇥ �x • ⇥, h] : u

Predict:
[X ⇥ � •Y⇥, h]

[Y ⇥ •⇤, h+ 1] : u
Y

u⇥ ⇤ ⇤ G, h < H

Complete:
[X ⇥ � •Y⇥, h] : u [Y ⇥ ⇤•, h+ 1] : v

[X ⇥ �Y • ⇥, h] : u� v



Generation by Earley
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Spurious Ambiguity

• Memorize the (partial) tree structures in each node

• Employ the sequence of Ealrye state as a node

• Horizontal/Vertical Markovization (Klein and Manning, 2003)
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Forest Reranking

• Choose the best derivation d among all possible 
derivations D in a forest F

• Terminal yield of the best derivation = the best 
translation

• Approximately apply non-local features (ngram language 
models) by Cube Pruning (Huang and Chiang, 2007)

• Efficient k-best by Algorithm 3 (Huang and Chiang, 2005)

d̂ = argmax
d∈D

w" · h(d, F )



Experiments
• WMT10 System Combination Task

• Czech, German, Spanish, French→ English

• tune/test: 455/2,034 sentences

cz-en de-en es-en fr-en

systems

tune

test

6 16 8 14

10.6K 10.9K 10.9K 11.0K

50.5K 52.1K 52.1K 52.4K



Systems
• CF:  Stanford parser + “cicada” (a hypergraph-based 

toolkit based on SEMIring parsing framework)

• CN: Single network by merging multiple networks + 
conversion into hypergraph by lattice parsing

• features: tuned by hypergraph-MERT(Kumar et al. 2009)

• Language Models, # of terminals, # of hyperedges

• # of rules in a derivation originally in nth system output

• BLEUs by treating each system output as a reference 
translation

• Network distance (only used for CN)



BLEU
cz-en de-en es-en fr-en

system min

max

CN

CF,v=∞,h=∞

CF,v=∞,h=2

CF,v=∞,h=1

14.09 15.62 21.79 16.79

23.44 24.10 29.97 29.17

23.70 24.09 30.45 29.15

24.13 24.18 30.41 29.57

24.14 24.58 30.52 28.84

24.01 23.91 30.46 29.32



Oracle BLEU
cz-en de-en es-en fr-en

rerank

CN

CF,v=∞,h=∞

CF,v=∞,h=2

CF,v=∞,h=1

29.40 32.32 36.83 36.59

38.52 34.97 47.65 46.37

30.51 34.07 38.69 38.94

30.61 34.25 38.87 39.10

31.09 34.65 39.27 39.51



Hypergraph size

• Average # of hyperedges

• (rough) estimates for speed

cz-en de-en es-en fr-en

CN

CF,v=∞,h=1

CF,v=5,h=1

CF,v=4,h=1

2,222.68 47,231.20 2,932.24 11,969.40

230.08 540.03 262.30 386.79

254.45 651.10 302.01 477.51

286.01 802.79 349.21 575.17



Conclusion
• System combination by Confusion Forest which 

employs syntactic distance, not word-level 
distance

• Forest construction by the grammar extracted 
from system outputs

• Parser: assign tree structure to the similar 
expressions

• Compact date structure + comparable 
performance against Confusion Network



Structures in SMT

• Tutorial

• Phrase-based MT 

• Tree-based MT

• Syntactic Structures in System Combination



Research on MT

• Reading: at least 50 papers are related to MT 
“every year”

• Specialist: solve a sub-problem

• Language Neutral: a solution which works only 
for a particular language pair is boring


