Statistical Machine Translation Based on Hierarchical Phrase Alignment

Taro Watanabe †, Kenji Imamura and Eiichiro Sumita

taro.watanabe@atr.co.jp

ATR Spoken Language Translation Research Laboratories

Introduction to SMT (refer to TMI Tutorial)

$$\mathbf{e} \leftarrow \mathbf{Translator} \leftarrow \mathbf{f}$$

 $\mathbf{e} = \arg \max_{\mathbf{e}} P(\mathbf{e}|\mathbf{f})$

Introduction to SMT (refer to TMI Tutorial)

How to represent $P(\mathbf{f}|\mathbf{e})$? (a correspondence between \mathbf{e} and \mathbf{f})

YIY

How to represent P(f|e)? (a correspondence between e and f)
 Introduction of a : alignment

$$P(\mathbf{f}|\mathbf{e}) = \sum_{\mathbf{a}} P(\mathbf{f}, \mathbf{a}|\mathbf{e})$$

How to represent P(f|e)? (a correspondence between e and f)
 Introduction of a : alignment

$$P(\mathbf{f}|\mathbf{e}) = \sum_{\mathbf{a}} P(\mathbf{f}, \mathbf{a}|\mathbf{e})$$

An example of alignments

NULL The₁ poor₂ don't₃ have₄ any₅ money₆

Les₁ pauvres₂ sont₃ demunis₄

How to represent P(f|e)? (a correspondence between e and f)
 Introduction of a : alignment

$$P(\mathbf{f}|\mathbf{e}) = \sum_{\mathbf{a}} P(\mathbf{f}, \mathbf{a}|\mathbf{e})$$

How to represent P(f|e)? (a correspondence between e and f)
 Introduction of a : alignment

$$P(\mathbf{f}|\mathbf{e}) = \sum_{\mathbf{a}} P(\mathbf{f}, \mathbf{a}|\mathbf{e})$$

An example of alignments

AR

Translation Model								
	Lexical Model $\prod t(f_j e_i)$				Fertility Model $\prod n(\phi_i e_i)$			
	Disto Head Non-Head	Distribution Model $\prod d_1(j - k \mathcal{A}(e) \mathcal{B}(f))$ $\prod d_{1>}(j - j' \mathcal{B}(f))$		NULL -	Translation Model			

YIS

Statistical Machine Translation Based on Hierarchical Phrase Alignment – p. 4/19

Good statistical translation model?

- Good statistical translation model?
- No syntactical knowledge
- Basically, word-for-word translation considering reordering
 - Phrasal constraints implicit in IBM Model 4 and 5
 - Very good for similar language pairs
 - What about Japanese and English or others?

- Good statistical translation model?
- No syntactical knowledge
- Basically, word-for-word translation considering reordering
 - Phrasal constraints implicit in IBM Model 4 and 5
 - Very good for similar language pairs
 - What about Japanese and English or others?

An example of viterbi alignment for F-E (from Mathematics of SMT) the program has been implemented | | | | | | | | | | | | le programme a été mis en application

- Good statistical translation model?
- No syntactical knowledge
- Basically, word-for-word translation considering reordering
 - Phrasal constraints implicit in IBM Model 4 and 5
 - Very good for similar language pairs
 - What about Japanese and English or others?

An example of viterbi alignment for J-E

 \mathbf{Y}

do you have some good medicine for a fever 熱の薬はありませんか

Problems of SMT — Training

Possible to estimate good parameters?

Problems of SMT — Training

- Possible to estimate good parameters?
- EM-algorithm with bootstrapping

715

- start with simpler models, such as
 - IBM Model 1 or 2 word-for-word translation model
 - HMM Model alignment with 1st order dependency to determine initial parameters
- Impossible to enumerate all the possible alignments (inevitable for IBM Model 3 – 5) Pegging
 - \blacksquare \sum over *neighbours* of probable alignments
 - *probable alignments* derived from IBM Models 1 or 2

Problems of SMT — Search

Given an input, can we translate it?

Problems of SMT — Search

- Given an input, can we translate it?
- input length = 10, output length = 11 and 20,000 vocabulary
 - 20,000¹¹ possible translations
 - (11 + 1)¹⁰ possible alignments
- NP-complete problem Traveling Salesman Problem
 - visit all the cities (input words)

- visit some of the hotels in a city (output words)
- (Almost) linear alignment (with local reordering) for G-E, F-E etc.
 - What about J-E? drastical reordering

Introduction to HPA

Align biligual text phrase-by-phrase

Introduction to HPA

- Align biligual text phrase-by-phrase
- An example

ALS

I have just arrived in Kyoto

京都に着いたばかりです

in Kyoto	 京都に
arrived in Kyoto	 京都 に 着い
have just arrived in Kyoto	 京都 に 着い た ばかり です

- Pairing of nodes by syntactic categories starting from word-linkage
- Phrase alignments which maximumize the number of aligned phrases
 Statistical Machine Translation Based on Hierarchical Phrase Alignment

Pairing of nodes by syntactic categories starting from word-linkage

Phrase alignments which maximumize the number of aligned phrases
Statistical Machine Translation Based on Hierarchical Phrase Alignment – p. 9/19

Pairing of nodes by syntactic categories starting from word-linkage

Phrase alignments which maximumize the number of aligned phrases
Statistical Machine Translation Based on Hierarchical Phrase Alignment – p. 9/19

- Pairing of nodes by syntactic categories starting from word-linkage
- Phrase alignments which maximumize the number of aligned phrases
 Statistical Machine Translation Based on Hierarchical Phrase Alignment

- Pairing of nodes by syntactic categories starting from word-linkage
- Phrase alignments which maximumize the number of aligned phrases
 Statistical Machine Translation Based on Hierarchical Phrase Alignment

- Pairing of nodes by syntactic categories starting from word-linkage
- Phrase alignments which maximumize the number of aligned phrases
 Statistical Machine Translation Based on Hierarchical Phrase Alignment

Pairing of nodes by syntactic categories starting from word-linkage

Phrase alignments which maximumize the number of aligned phrases
Statistical Machine Translation Based on Hierarchical Phrase Alignment – p. 9/19

Chunking by HPA

Chunking by HPA

Chunking Model

Create a model by treating each chunk as a token

- business class \longrightarrow business:class
- is fully booked \longrightarrow is:fully:booked
- 予約でいっぱいです → 予約:で:いっぱい:です

Bootstrapping from IBM Model 1 and create IBM Model 4

HPA Model

A set of alignments hypothesized by HPA

Directly compute IBM Model 4 parameters w/o pegging

$$tc(f|e; \mathbf{f}, \mathbf{e}, \mathbf{A_{HPA}}) = \sum_{\mathbf{a} \in \mathbf{A_{HPA}}} P(\mathbf{a}|\mathbf{f}, \mathbf{e}) \sum_{i,j} \delta(f, f_j) \delta(e, e_{a_j})$$
$$t(f|e) \leftarrow \sum_{s \in train} tc(f|e; \mathbf{f}_s, \mathbf{e}_s, \mathbf{A}_s)$$

HPA+train Model

- Use the HPA model (= IBM Model 4) as initial parameters for further training of IBM Model 4
- Use pegged alignments

Overview of Models

Experimental Results — Settings

Corpus

	English	Japanese		
number of sentences	145,432			
number of words	835,048	896,302		
vocabulary size	13,162	20,348		
average sentence length	5.74	6.16		
trigram perplexity	36.03	32.93		

Chunking

AR

	English	Japanese
number of chunks	7,604	6,750
vocabulary size (of chunks)	2,166	1,624
average number of chunks per sentence	0.759	0.673
average number of words per chunk	2.21	2.52
trigram perplexity	72.36	72.07

J-E Translation Results (1)

Tested on 150 inputs

Model	WER	PER	SE				
			Α	В	С	D	
baseline	70.2	59.2	12.7	33.3	14.7	38.7	
chunking	64.0	53.1	21.3	28.0	16.7	34.0	
HPA	64.5	58.1	17.3	32.0	15.3	35.3	
HPA+train	71.0	59.3	16.0	32.0	22.0	30.0	

WER: word error rate

ALS

PER: position independent word error rate

SE: subjective evaluation (A: perfect, B: fair, C: acceptable, D: nonsense)

J-E Translation Results (2)

Model	Model WER			PER			SE(A+B+C)		
length	6	8	10	6	8	10	6	8	10
baseline	66.6	67.5	76.6	56.8	60.7	60.0	66.0	64.0	52.0
chunking	54.5) 57.0	80.6	48.4	48.9	62.0	78.0	72.0	48.0
HPA	59.5	65.7	68.4	55.3	60.7	58.4	72.0	66.0	56.0
HPA+train	64.3	72.6	76.2	55.8	62.5	59.7	78.0	72.0	60.0

Sample Translations

ステーキの:焼き 具合はどうされますか

- baseline: (D) can you steak
- chunking: (A) how do you like your:steak
- HPA+train: (A) how do you like your steak

ゴルフ場の:予約でき:ます:か

YIS

- baseline: (C) can i make-a-reservation
- chunking: (A) can:i make-a-reservation:for golf
- HPA+train: (A) could you make-a-reservation for the golf course
- シカゴ から シアトル まで どのくらい:時間:が かかり:ます:か
 - baseline: (A) how-long does it take to seattle from chicago
 - chunking: (A) how-long will:it:take to seattle from chicago
 - HPA+train: (B) do you how-long will it take to seattle from chicago

Sample Translations (Contd.)

席の確保ではくれぐれも最高の所をお願いします

(please be sure to secure the best available seats for us)

baseline: (B) i would like a seat in a great place please

chunking: (D) what 's the maximum area for sends providing seats

HPA+train: (D) my best regards to your seat find a place please

初心者な:の:だけど参加しても:いい:です:か

(i am a beginner may i join)

- baseline: (D) do you have may but take beginner
- chunking: (D) can:i join beginners ring
- HPA+train: (D) it is but i am a beginner