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Introduction to SMT
(refer to TMI Tutorial)
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Introduction to SMT
(refer to TMI Tutorial)

Translator | <— f

e = arg max P(e|f)
(@

Apply the Bayes Rule:

Source Model e Channel Model | — f
e = argmax P(elf)
= argmax P(e) X P(fle)
(S

B P(e) — Language Model
B P(fle) — Translation Model

AR

Statistical Machine Translation Based on Hierarchical Phrase Alignment — p. 2/19



AR

Translation Model

B How to represent P(fle)? (a correspondence between e and f)
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P(fle) = Z P(f, ale)

AR

Statistical Machine Translation Based on Hierarchical Phrase Alignment — p. 3/19



Translation Model

B How to represent P(fle)? (a correspondence between e and f)

B Introduction of a : alignment
P(fle) = )" P(f,ale)

B An example of alignments

NULL The; poor; don’ts havey anys moneyg

Les; pauvres, Sont;  demunisy
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Translation Model

B How to represent P(fle)? (a correspondence between e and f)

B Introduction of a : alignment
P(fle) = )" P(f,ale)

B An example of alignments

NULL The; poor; don’ts havey anys Mmoneyg

o

Les; pauvres, Sont;  demunisy

a=(1,2,4,5)
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Translation Model

B How to represent P(fle)? (a correspondence between e and f)

B Introduction of a : alignment
P(fle) = )" P(f,ale)

B An example of alignments

NULL The;, poor; don’ts havey anys Bflem

Les; pauvres, Sont;  demunisy

a=1(0,2,3,6)
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Structure of TM (IBM Model 4)

Translation Model

Lexical Model Fertility Model
[T(fle:) [1n(dile:)

Distortion Model
Head [1d1(j — K A)B(S))
& Non-Head []di>(j— jI1B(f))

NULL Translation Model
m— m-2¢o ¢
( ¢§5 0)1’0 Py’
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Structure of TM (IBM Model 4)
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Structure of TM (IBM Model 4)
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Structure of TM (IBM Model 4)

Lexical Model

[T(fle:)

Translation Model

Fertility Model
[1n(gile;)

Distortion Model

Head [1d1(j = klA)B(f))
Non-Head []di-(j — jIB(f))

NULL Translation Model
m— m-2¢o ¢
( ¢f 0)1’0 Py’

NULL Translation Model
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Problems of SMT — Modeling

B Good statistical translation model?
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Problems of SMT — Modeling

B Good statistical translation model?
B No syntactical knowledge

M Basically, word-for-word translation considering reordering
B Phrasal constraints implicit in IBM Model 4 and 5
® Very good for similar language pairs
B What about Japanese and English or others?
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Problems of SMT — Modeling

B Good statistical translation model?
B No syntactical knowledge

M Basically, word-for-word translation considering reordering
B Phrasal constraints implicit in IBM Model 4 and 5

® Very good for similar language pairs
B What about Japanese and English or others?

An example of viterbi alignment for F-E (from Mathematics of SMT)
the program has been implemented

| | . N

le programme a été mis en application
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Problems of SMT — Modeling

B Good statistical translation model?
B No syntactical knowledge

M Basically, word-for-word translation considering reordering
B Phrasal constraints implicit in IBM Model 4 and 5

® Very good for similar language pairs
B What about Japanese and English or others?

An example of viterbi alignment for J-E

do have some good medicine f fever
2 = i HD FE N
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Problems of SMT — Training

B Possible to estimate good parameters?
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Problems of SMT — Training

M Possible to estimate good parameters?

B EM-algorithm with bootstrapping

W start with simpler models, such as
IBM Model 1 or 2 — word-for-word translation model
HMM Model — alignment with 1st order dependency
to determine initial parameters

B Impossible to enumerate all the possible alignments
(inevitable for IBM Model 3 — 5)
Pegging
W > over neighbours of probable alignments
W probable alignments derived from IBM Models 1 or 2
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Problems of SMT — Search

M Given an input, can we translate it?
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Problems of SMT — Search

B Given an input, can we translate it?

M input length = 10, output length = 11 and 20,000 vocabulary
M 20,000'" possible translations
® (11 + 1)'° possible alignments

B NP-complete problem — Traveling Salesman Problem
W visit all the cities (input words)
M visit some of the hotels in a city (output words)

M (Almost) linear alignment (with local reordering) for G-E, F-E etc.
® What about J-E? — drastical reordering
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Introduction to HPA

M Align biligual text phrase-by-phrase
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Introduction to HPA

M Align biligual text phrase-by-phrase

B An example

| have just arrived in Kyoto
HEBIZ BV 72 1 dh0D TT

i in Kyoto —  HUEF I
: arrived in Kyoto —  H#E 12 & W
have just arrived in Kyoto —  H& IZ EFW 72 M0 T
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An Example of HPA

M Pairing of nodes by syntactic categories starting from
word-linkage

\-r{ B Phrase alignments which maximumize the number of aligned
r phrases
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An Example of HPA

=30 TY

NP(1) Vi)
VMP(2)___
VP

AU)é P

M Pairing of nodes by syntactic categories starting from
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\-r{ B Phrase alignments which maximumize the number of aligned
r phrases
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An Example of HPA

=30 TY

NP:(I)W VP:(3)
P2)
\VP(4)/\AU§ 2

M Pairing of nodes by syntactic categories starting from
word-linkage

\-r{ B Phrase alignments which maximumize the number of aligned
r phrases
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An Example of HPA

S
\AUXVP(S)\

VP4)
TTVMPQ)

VP(3)/ e

=30 TY

NP:(I)W 4/VP:(3)
P2)
VP
\AUXS 5)

B Pairing of nodes by syntactic categories starting from
word-linkage

\-r{ B Phrase alignments which maximumize the number of aligned
r phrases
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An Example of HPA

VMP(2)
VP
T TAUXVPG)
S(6)

B Pairing of nodes by syntactic categories starting from
word-linkage

\-r{ B Phrase alignments which maximumize the number of aligned
r phrases
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Chunking by HPA

S3)
VP2
ro___
/K VP
N
Busnesclne] (5~ fally ~~  booked
| EUXRAT TR I (IR < wusinw e )

—_— e e—— e—— e— e—— — e— e— — — — — — — — — —

— e — —— — ——

S@3)

B Chunking by extracting low-level phrases
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Chunking by HPA

————— — —
— — — — — — — — — — — — — — — — — ——

|EPRAZSAT F (TR 'Q____m_oii’p_'@jd)
| T REC AT < >

NP:(I)\VMP/ §P ..NlL..... N%

S@3)

B Chunking by extracting low-level phrases
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Chunking Model

B Create a model by treating each chunk as a token

business class —> business:class
is fully booked —> is:fully:booked
FHK T WoldWn TT — PR TN TT

B Bootstrapping from IBM Model 1 and create IBM Model 4

AR
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HPA Model

r—--—-"-"=-—-"—" r——m"--"-"-"--—-—"-—="-—"=—"=—n"

NULL | business class | | |s§/: fully booked |

|%% momm T9 |

_— e — — —_— e —_— e e e  —_— —_— ———— ]

i Anpa = ({1, 2}, {0y, 3,45 3,45, {345, {3,45)

M Directly compute IBM Model 4 parameters w/o pegging

te(fle:f. e, Anps) = P(alf, e)Z(S(f fote, eq,)

(fley « ) tc(fleifs, e Ay)

AIR
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HPA-+train Model

B Use the HPA model (= IBM Model 4) as initial parameters for
further training of IBM Model 4

B Use pegged alignments
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Overview of Models

bilingual text

@rase aIignm@ :
|
~C . |

I
I
I
| s . :
' training : chunks of words > HPA Model > :
2 model 1 ' \ 5 -
| bootstrapping '
| training I -
| from HPA model -
model 4 | model 1 | training | -
: ; model 4 : :
: model 4 SRR “ :

Y
- < Baseline ModeT > <__Chunking Model > < _HPA+train Mode —
—
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Experimental Results — Settings

B Corpus
English  Japanese
number of sentences 145,432
number of words 835,048 896,302
vocabulary size 13,162 20,348
i average sentence length 5.74 6.16
trigram perplexity 36.03 32.93
B Chunking
English  Japanese
number of chunks 7,604 6,750
vocabulary size (of chunks) 2,166 1,624
average number of chunks per sentence 0.759 0.673
\- r{ average number of words per chunk 2.21 2.52
r— trigram perplexity B | 7236 7207 b 1510



J-E Translation Results (1)

M Tested on 150 inputs

Model WER | PER SE
A B C D
baseline 70.2 | 59.2 12.7 333 14.7 38.7

chunking  [(64.0)| 53.1 |(21.3) 280 167 (34.0)

i HPA 64.5 | 58.1 173 320 153 353

HPA+train | 71.0 | 59.3 16.0 32.0 ( 22.0 { 30.0

WER: word error rate
PER: position independent word error rate
SE: subjective evaluation (A: perfect, B: fair, C: acceptable, D: nonsense)
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J-E Translation Results (2)

Model WER PER SE(A+B+C)
length 6 8 10 6 8 10 6 8 10
baseline | 66.6 67.5 76.6 | 56.8 60.7 60.0 || 66.0 640 52.0
chunking @ 57.0 @ 48.4 489 620 || 780 720 @
HPA 595 657 68.4 | 553 607 58.4 || 720 66.0 56.0
HPA+train | 64.3 726 762 | 558 625 59.7 || 780 72.0 @
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Sample Translations

AT—F OHEE B ld D S N XTI »

baseline: (D) can you steak
chunking: (A)  how do you like your:steak
HPA+train:  (A)  how do you like your steak
DIV T75 O:FF) TEXT:»
i baseline: (C) cani make-a-reservation
chunking: (A) can:i make-a-reservation:for golf

HPA+train:  (A)  could you make-a-reservation for the golf course
DHAMS 7 RV EFT EDOL SWVIRERED v D E g7

baseline: (A)  how-long does it take to seattle from chicago

chunking: (A)  how-long will:it:take to seattle from chicago

HPA+train:  (B) do you how-long will it take to seattle from chicago
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Sample Translations (Contd.)

& O MR T <N<Nd mm O &2 BEWLET
(please be sure to secure the best available seats for us)
baseline: (B) iwould like a seat in a great place please
chunking: (D) what’s the maximum area for sends providing seats
HPA+train: (D) my best regards to your seat find a place please
FLE 72072 W E ZIL TH W TT
(i am a beginner may i join)
baseline: (D) do you have may but take beginner
chunking: (D) can:ijoin beginners ring
HPA+train: (D) itis butiam a beginner
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